35 resultados para Brain Diseases.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To describe the clinical spectrum, diagnostic evaluation, current management, and neurologic outcome of pediatric antibody-associated inflammatory brain diseases (AB-associated IBrainD). METHODS We performed a single-center retrospective cohort study of consecutive patients aged ≤18 years diagnosed with an AB-associated IBrainD at The Hospital for Sick Children, Toronto, Ontario, Canada, between January 2005 and June 2013. Standardized clinical data, laboratory test results, neuroimaging features, and treatment regimens were captured. RESULTS Of 169 children (93 female, 55%) diagnosed with an IBrainD, 16 (10%) had an AB-associated IBrainD. Median age at presentation was 13.3 years (range 3.1-17.9); 11 (69%) were female. Nine patients (56%) had anti-NMDA receptor encephalitis, 4 (25%) had aquaporin-4 autoimmunity, 2 (13%) had Hashimoto encephalitis, and 1 (6%) had anti-glutamic acid decarboxylase 65 (GAD65) encephalitis. The key presenting features in children with anti-NMDA receptor encephalitis, Hashimoto encephalopathy, and anti-GAD65 encephalitis included encephalopathy, behavioral symptoms, and seizures; patients with aquaporin-4 autoimmunity showed characteristic focal neurologic deficits. Six patients (38%) required intensive care unit admission at presentation. Median time from symptom onset to diagnosis was 55 days (range 6-358). All but 1 patient received immunosuppressive therapy. One child with anti-NMDA receptor encephalitis died due to multiorgan failure. At last follow-up, after a median follow-up time of 1.7 years (range 0.8-3.7), 27% of the children had function-limiting neurologic sequelae. CONCLUSIONS Children with AB-associated IBrainD represent an increasing subgroup among IBrainD; 1 in 4 children has function-limiting residual neurologic deficits. Awareness of the different clinical patterns is important in order to facilitate timely diagnosis and initiate immunosuppressive treatment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Brain disease is an important cause of neurologic deficits in small ruminants, however few MRI features have been described. The aim of this retrospective, case series study was to describe MRI characteristics in a group of small ruminants with confirmed brain disease. A total of nine small ruminants (six sheep and three goats) met inclusion criteria. All had neurologic disorders localized to the brain and histopathologic confirmation. In animals with toxic-metabolic diseases, there were bilaterally symmetric MRI lesions affecting either the gray matter (one animal with polioencephalomalacia) or the white matter (two animals with enterotoxemia). In animals with suppurative inflammation, asymmetric focal brainstem lesions were present (two animals with listeric encephalitis), or lesions typical of an intra-axial (one animal) or dural abscess (one animal), respectively. No MRI lesions were detected in one animal with suspected viral cerebellitis and one animal with parasitic migration tracts. No neoplastic or vascular lesions were identified in this case series. Findings from the current study supported the use of MRI for diagnosing brain diseases in small ruminants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs, including the membrane-type MMPs (MT-MMPs)), a disintegrin and metalloproteinase (ADAM), and ADAM with thrombospondin motifs belong to the metzincins, a subclass of metalloproteinases that contain a Met residue and a Zn(2+) ion at the catalytic site necessary for enzymatic reaction. MMP proteolytic activity is mainly controlled by their natural tissue inhibitors of metalloproteinase (TIMP). A number of synthetic inhibitors have been developed to control deleterious MMP activity. The roles of MMPs and some of their ECM substrates in CNS physiology and pathology are covered by other chapters of the present volume and will thus not be addressed in depth. This chapter will focus (i) on the endogenous MMP inhibitors in the CNS, (ii) on MMP and TIMP regulations in three large classes of neuropathologic processes (inflammatory, neurodegenerative, and infectious), and (iii) on synthetic inhibitors of MMPs and the perspective of their use in different brain diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND Infectious diseases and social contacts in early life have been proposed to modulate brain tumour risk during late childhood and adolescence. METHODS CEFALO is an interview-based case-control study in Denmark, Norway, Sweden and Switzerland, including children and adolescents aged 7-19 years with primary intracranial brain tumours diagnosed between 2004 and 2008 and matched population controls. RESULTS The study included 352 cases (participation rate: 83%) and 646 controls (71%). There was no association with various measures of social contacts: daycare attendance, number of childhours at daycare, attending baby groups, birth order or living with other children. Cases of glioma and embryonal tumours had more frequent sick days with infections in the first 6 years of life compared with controls. In 7-19 year olds with 4+ monthly sick day, the respective odds ratios were 2.93 (95% confidence interval: 1.57-5.50) and 4.21 (95% confidence interval: 1.24-14.30). INTERPRETATION There was little support for the hypothesis that social contacts influence childhood and adolescent brain tumour risk. The association between reported sick days due to infections and risk of glioma and embryonal tumour may reflect involvement of immune functions, recall bias or inverse causality and deserve further attention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scrapie and bovine spongiform encephalopathy (BSE) are both prion diseases affecting ruminants, and these diseases do not share the same public health concerns. Surveillance of the BSE agent in small ruminants has been a great challenge, and the recent identification of diverse prion diseases in ruminants has led to the development of new methods for strain typing. In our study, using immunohistochemistry (IHC), we assessed the distribution of PrP(d) in the brains of 2 experimentally BSE-infected sheep with the ARQ/ARQ genotype. Distribution of PrP(d) in the brain, from the spinal cord to the frontal cortex, was remarkably similar in the 2 sheep despite different inoculation routes and incubation periods. Comparatively, overall PrP(d) brain distribution, evaluated by IHC, in 19 scrapie cases with the ARQ/ARQ, ARQ/VRQ, and VRQ/VRQ genotypes, in some cases showed similarities to the experimentally BSE-infected sheep. There was no exclusive neuroanatomical site with a characteristic and specific PrP(d) type of accumulation induced by the BSE agent. However, a detailed analysis of the topography, types, and intensity of PrP(d) deposits in the frontal cortex, striatum, piriform cortex, hippocampus, mesencephalon, and cerebellum allowed the BSE-affected sheep group to be distinguished from the 19 scrapie cases analyzed in our study. These results strengthen and emphasize the potential interest of PrP(d) brain mapping to help in identifying prion strains in small ruminants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Central nervous system (CNS) infections in ruminant livestock, such as listeriosis, are of major concern for veterinary and public health. To date, no host-specific in vitro models for ruminant CNS infections are available. Here, we established and evaluated the suitability of organotypic brain-slices of ruminant origin as in vitro model to study mechanisms of Listeria monocytogenes CNS infection. Ruminants are frequently affected by fatal listeric rhombencephalitis that closely resembles the same condition occurring in humans. Better insight into host-pathogen interactions in ruminants is therefore of interest, not only from a veterinary but also from a public health perspective. Brains were obtained at the slaughterhouse, and hippocampal and cerebellar brain-slices were cultured up to 49 days. Viability as well as the composition of cell populations was assessed weekly. Viable neurons, astrocytes, microglia and oligodendrocytes were observed up to 49 days in vitro. Slice cultures were infected with L. monocytogenes, and infection kinetics were monitored. Infected brain cells were identified by double immunofluorescence, and results were compared to natural cases of listeric rhombencephalitis. Similar to the natural infection, infected brain-slices showed focal replication of L. monocytogenes and bacteria were predominantly observed in microglia, but also in astrocytes, and associated with axons. These results demonstrate that organotypic brain-slice cultures of bovine origin survive for extended periods and can be infected easily with L. monocytogenes. Therefore, they are a suitable model to study aspects of host-pathogen interaction in listeric encephalitis and potentially in other neuroinfectious diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND The central nervous system (CNS) is an immunologically privileged site to which access for circulating immune cells is tightly controlled by the endothelial blood-brain barrier (BBB) located in CNS microvessels. Under physiological conditions immune cell migration across the BBB is low. However, in neuroinflammatory diseases such as multiple sclerosis, many immune cells can cross the BBB and cause neurological symptoms. Extravasation of circulating immune cells is a multi-step process that is regulated by the sequential interaction of different adhesion and signaling molecules on the immune cells and on the endothelium. The specialized barrier characteristics of the BBB, therefore, imply the existence of unique mechanisms for immune cell migration across the BBB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the healthy individuum lymphocyte traffic into the central nervous system (CNS) is very low and tightly controlled by the highly specialized blood-brain barrier (BBB). In contrast, under inflammatory conditions of the CNS such as in multiple sclerosis or in its animal model experimental autoimmune encephalomyelitis (EAE) circulating lymphocytes and monocytes/macrophages readily cross the BBB and gain access to the CNS leading to edema, inflammation and demyelination. Interaction of circulating leukocytes with the endothelium of the blood-spinal cord and blood-brain barrier therefore is a critical step in the pathogenesis of inflammatory diseases of the CNS. Leukocyte/endothelial interactions are mediated by adhesion molecules and chemokines and their respective chemokine receptors. We have developed a novel spinal cord window preparation, which enables us to directly visualize CNS white matter microcirculation by intravital fluorescence videomicroscopy. Applying this technique of intravital fluorescence videomicroscopy we could provide direct in vivo evidence that encephalitogenic T cell blasts interact with the spinal cord white matter microvasculature without rolling and that alpha4-integrin mediates the G-protein independent capture and subsequently the G-protein dependent adhesion strengthening of T cell blasts to microvascular VCAM-1. LFA-1 was found to neither mediate the G-protein independent capture nor the G- protein dependent initial adhesion strengthening of encephalitogenic T cell blasts within spinal cord microvessel, but was rather involved in T cell extravasation across the vascular wall into the spinal cord parenchyme. Our observation that G-protein mediated signalling is required to promote adhesion strengthening of encephalitogenic T cells on BBB endothelium in vivo suggested the involvement of chemokines in this process. We found functional expression of the lymphoid chemokines CCL19/ELC and CCL21/SLC in CNS venules surrounded by inflammatory cells in brain and spinal cord sections of mice afflicted with EAE suggesting that the lymphoid chemokines CCL19 and CCL21 besides regulating lymphocyte homing to secondary lymphoid tissue might be involved in T lymphocyte migration into the immuneprivileged CNS during immunosurveillance and chronic inflammation. Here, I summarize our current knowledge on the sequence of traffic signals involved in T lymphocyte recruitment across the healthy and inflamed blood-brain and blood-spinal cord barrier based on our in vitro and in vivo investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel magnetic resonance imaging sequences have and still continue to play an increasing role in neuroimaging and neuroscience. Among these techniques, diffusion-weighted imaging (DWI) has revolutionized the diagnosis and management of diseases such as stroke, neoplastic disease and inflammation. However, the effects of aging on diffusion are yet to be determined. To establish reference values for future experimental mouse studies we tested the hypothesis that absolute apparent diffusion coefficients (ADC) of the normal brain change with age. A total of 41 healthy mice were examined by T2-weighted imaging and DWI. For each animal ADC frequency histograms (i) of the whole brain were calculated on a voxel-by-voxel basis and region-of-interest (ROI) measurements (ii) performed and related to the animals' age. The mean entire brain ADC of mice <3 months was 0.715(+/-0.016) x 10(-3) mm2/s, no significant difference to mice aged 4 to 5 months (0.736(+/-0.040) x 10(-3) mm2/s) or animals older than 9 months 0.736(+/-0.020) x 10(-3) mm2/s. Mean whole brain ADCs showed a trend towards lower values with aging but both methods (i + ii) did not reveal a significant correlation with age. ROI measurements in predefined areas: 0.723(+/-0.057) x 10(-3) mm2/s in the parietal lobe, 0.659(+/-0.037) x 10(-3) mm2/s in the striatum and 0.679(+/-0.056) x 10(-3) mm2/s in the temporal lobe. With advancing age, we observed minimal diffusion changes in the whole mouse brain as well as in three ROIs by determination of ADCs. According to our data ADCs remain nearly constant during the aging process of the brain with a small but statistically non-significant trend towards a decreased diffusion in older animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rising concern exists that with the widespread use of mobile communication technologies, the incidence of brain tumours may increase. On the basis of data from the Swiss national mortality registry from 1969 to 2002, annual age-standardized brain tumour mortality rates per 100,000 person-years were calculated using the European standard population. Time trend analyses were performed by the Poisson regression for six different age groups in men and women separately. The study period was divided into two intervals: before and after 1987, when the analogue mobile technology was introduced in Switzerland. Age-standardized brain tumour mortality rates ranged between 3.7 and 6.7 for men and 2.5 and 4.4 for women per 100,000 person-years. For the whole study period, a significant increase in brain tumour mortality was observed for men and women in the older age groups (60-74 and 75+ years) but not in the younger ones in whom mobile phone use was more prevalent. Time trend analyses restricted to data from 1987 onwards revealed relatively stable brain tumour mortality rates in all age groups. For instance, the annual change in brain tumour mortality rate for the 45-59-year age group was -0.3% (95% confidence interval: -1.7; 1.1) for men and -0.4% (95% confidence interval:-2.2; 1.3) for women. We conclude that after the introduction of mobile phone technology in Switzerland, brain tumour mortality rates remained stable in all age groups. Our results suggest that mobile phone use is not a strong risk factor in the short term for mortality from brain tumours. Ecological analyses like this, however, are limited in their ability to reveal potentially small increases in risk for diseases with a long latency period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proton magnetic resonance spectroscopy (MRS) allows the assessment of various cerebral metabolites non-invasively in vivo. Among 1H MRS-detectable metabolites, N-acetyl-aspartate and N-acetyl-aspartyl-glutamate (tNAA), trimethylamines (TMA), creatine and creatine phosphate (tCr), inositol (Ins) and glutamate (Gla) are of particular interest, since these moieties can be assigned to specific neuronal and glial metabolic pathways, membrane constituents, and energy metabolism. In this study on 94 subjects from a memory clinic population, 1H MRS results (single voxel STEAM: TE 20 ms, TR 1500 ms) on the above metabolites were assessed for five different brain regions in probable vascular dementia (VD), probable Alzheimer's disease (AD), and age-matched healthy controls. In both VD and AD, ratios of tNAA/tCr were decreased, which may be attributed to neuronal atrophy and loss, and Ins/tCr-ratios were increased indicating either enhanced gliosis or alteration of the cerebral inositol metabolism. However, the topographical distribution of the metabolic alterations in both diseases differed, revealing a temporoparietal pattern for AD and a global, subcortically pronounced pattern for VD. Furthermore, patients suffering from vascular dementia (VD) had remarkably enhanced TMA/tCr ratios, potentially due to ongoing degradation of myelin. Thus, the metabolic alterations obtained by 1H MRS in vivo allow insights into the pathophysiology of the different dementias and may be useful for diagnostic classification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central nervous system (CNS) has long been regarded as an immune privileged organ implying that the immune system avoids the CNS not to disturb its homeostasis, which is critical for proper function of neurons. Meanwhile, it is accepted that immune cells do in fact gain access to the CNS and that immune responses are mounted within this tissue. However, the unique CNS microenvironment strictly controls these immune reactions starting with tightly regulating immune cell entry into the tissue. The endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid (CSF) barrier control immune cell entry into the CNS, which is rare under physiological conditions. During a variety of pathological conditions of the CNS such as viral or bacterial infections, or during inflammatory diseases such as multiple sclerosis (MS), immunocompetent cells readily traverse the BBB and subsequently enter the CNS parenchyma. Most of our current knowledge on the molecular mechanisms involved in immune cell entry into the CNS has been derived from studies performed in experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Thus, a large part of our current knowledge on immune cell entry across the BBBs is based on the results obtained in this animal model. Similarly, knowledge on the benefits and potential risks associated with therapeutic targeting of immune cell recruitment across the BBB in human diseases are mostly derived from such treatment regimen in MS. Other mechanisms of immune cell entry into the CNS might therefore apply under different pathological conditions such as bacterial meningitis or stroke and need to be considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morbidity and mortality associated with bacterial meningitis remain high, although antibiotic therapy has improved during recent decades. The major intracranial complications of bacterial meningitis are cerebrovascular arterial and venous involvement, brain edema, and hydrocephalus with a subsequent increase of intracranial pressure. Experiments in animal models and cell culture systems have focused on the pathogenesis and pathophysiology of bacterial meningitis in an attempt to identify the bacterial and/or host factors responsible for brain injury during the course of infection. An international workshop entitled "Bacterial Meningitis: Mechanisms of Brain Injury" was organized by the Department of Neurology at the University of Munich and was held in Eibsee, Germany, in June 1993. This conference provided a forum for the exchange of current information on bacterial meningitis, including data on the clinical spectrum of complications, the associated morphological alterations, the role of soluble inflammatory mediators (in particular cytokines) and of leukocyte-endothelial cell interactions in tissue injury, and the molecular mechanisms of neuronal injury, with potential mediators such as reactive oxygen species, reactive nitrogen species, and excitatory amino acids. It is hoped that a better understanding of the pathophysiological events that take place during bacterial meningitis will lead to the development of new therapeutic regimens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of no fluids versus liberal fluid supplementation on brain edema and cerebrospinal fluid (CSF) lactate and glucose concentrations was compared in rabbits with experimental Escherichia coli meningitis. Fluid restriction for the duration of the experiment (19 h) led to a decrease in body weight by approximately 5%, while the high fluid regimen increased body weight by approximately 5%. Infected animals developed brain edema compared with controls, but the fluid regimen had no measurable effect on the degree of edema. In contrast, fluid-restricted animals had significantly higher CSF lactate and lower CSF glucose concentrations than fluid-supplemented animals (lactate, 13.5 +/- 3.5 vs. 10.1 +/- 3.3 mmol/L; glucose, 1.89 +/- 1.39 vs. 4.11 +/- 1.39 mmol/L). These results fail to support the hypothesis that administration of large amounts of fluid in this model of gram-negative bacterial meningitis aggravates brain edema.