78 resultados para Brain Connectivity Networks

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an overview of different methods for decomposing a multichannel spontaneous electroencephalogram (EEG) into sets of temporal patterns and topographic distributions. All of the methods presented here consider the scalp electric field as the basic analysis entity in space. In time, the resolution of the methods is between milliseconds (time-domain analysis), subseconds (time- and frequency-domain analysis) and seconds (frequency-domain analysis). For any of these methods, we show that large parts of the data can be explained by a small number of topographic distributions. Physically, this implies that the brain regions that generated one of those topographies must have been active with a common phase. If several brain regions are producing EEG signals at the same time and frequency, they have a strong tendency to do this in a synchronized mode. This view is illustrated by several examples (including combined EEG and functional magnetic resonance imaging (fMRI)) and a selective review of the literature. The findings are discussed in terms of short-lasting binding between different brain regions through synchronized oscillations, which could constitute a mechanism to form transient, functional neurocognitive networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural and functional connectivity are intrinsic properties of the human brain and represent the amount of cognitive capacities of individual subjects. These connections are modulated due to development, learning, and disease. Momentary adaptations in functional connectivity alter the structural connections, which in turn affect the functional connectivity. Thus, structural and functional connectivity interact on a broad timescale. In this study, we aimed to explore distinct measures of connectivity assessed by functional magnetic resonance imaging and diffusion tensor imaging and their association to the dominant electroencephalogram oscillatory property at rest: the individual alpha frequency (IAF). We found that in 21 healthy young subjects, small intraindividual temporal IAF fluctuations were correlated to increased blood oxygenation level-dependent signal in brain areas associated to working memory functions and to the modulation of attention. These areas colocalized with functionally connected networks supporting the respective functions. Furthermore, subjects with higher IAF show increased fractional anisotropy values in fascicles connecting the above-mentioned areas and networks. Hence, due to a multimodal approach a consistent functionally and structurally connected network related to IAF was observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational network analysis provides new methods to analyze the human connectome. Brain structural networks can be characterized by global and local metrics that recently gave promising insights for diagnosis and further understanding of neurological, psychiatric and neurodegenerative disorders. In order to ensure the validity of results in clinical settings the precision and repeatability of the networks and the associated metrics must be evaluated. In the present study, nineteen healthy subjects underwent two consecutive measurements enabling us to test reproducibility of the brain network and its global and local metrics. As it is known that the network topology depends on the network density, the effects of setting a common density threshold for all networks were also assessed. Results showed good to excellent repeatability for global metrics, while for local metrics it was more variable and some metrics were found to have locally poor repeatability. Moreover, between subjects differences were slightly inflated when the density was not fixed. At the global level, these findings confirm previous results on the validity of global network metrics as clinical biomarkers. However, the new results in our work indicate that the remaining variability at the local level as well as the effect of methodological characteristics on the network topology should be considered in the analysis of brain structural networks and especially in networks comparisons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational network analysis provides new methods to analyze the brain's structural organization based on diffusion imaging tractography data. Networks are characterized by global and local metrics that have recently given promising insights into diagnosis and the further understanding of psychiatric and neurologic disorders. Most of these metrics are based on the idea that information in a network flows along the shortest paths. In contrast to this notion, communicability is a broader measure of connectivity which assumes that information could flow along all possible paths between two nodes. In our work, the features of network metrics related to communicability were explored for the first time in the healthy structural brain network. In addition, the sensitivity of such metrics was analysed using simulated lesions to specific nodes and network connections. Results showed advantages of communicability over conventional metrics in detecting densely connected nodes as well as subsets of nodes vulnerable to lesions. In addition, communicability centrality was shown to be widely affected by the lesions and the changes were negatively correlated with the distance from lesion site. In summary, our analysis suggests that communicability metrics that may provide an insight into the integrative properties of the structural brain network and that these metrics may be useful for the analysis of brain networks in the presence of lesions. Nevertheless, the interpretation of communicability is not straightforward; hence these metrics should be used as a supplement to the more standard connectivity network metrics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The brain is a complex neural network with a hierarchical organization and the mapping of its elements and connections is an important step towards the understanding of its function. Recent developments in diffusion-weighted imaging have provided the opportunity to reconstruct the whole-brain structural network in-vivo at a large scale level and to study the brain structural substrate in a framework that is close to the current understanding of brain function. However, methods to construct the connectome are still under development and they should be carefully evaluated. To this end, the first two studies included in my thesis aimed at improving the analytical tools specific to the methodology of brain structural networks. The first of these papers assessed the repeatability of the most common global and local network metrics used in literature to characterize the connectome, while in the second paper the validity of further metrics based on the concept of communicability was evaluated. Communicability is a broader measure of connectivity which accounts also for parallel and indirect connections. These additional paths may be important for reorganizational mechanisms in the presence of lesions as well as to enhance integration in the network. These studies showed good to excellent repeatability of global network metrics when the same methodological pipeline was applied, but more variability was detected when considering local network metrics or when using different thresholding strategies. In addition, communicability metrics have been found to add some insight into the integration properties of the network by detecting subsets of nodes that were highly interconnected or vulnerable to lesions. The other two studies used methods based on diffusion-weighted imaging to obtain knowledge concerning the relationship between functional and structural connectivity and about the etiology of schizophrenia. The third study integrated functional oscillations measured using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) as well as diffusion-weighted imaging data. The multimodal approach that was applied revealed a positive relationship between individual fluctuations of the EEG alpha-frequency and diffusion properties of specific connections of two resting-state networks. Finally, in the fourth study diffusion-weighted imaging was used to probe for a relationship between the underlying white matter tissue structure and season of birth in schizophrenia patients. The results are in line with the neurodevelopmental hypothesis of early pathological mechanisms as the origin of schizophrenia. The different analytical approaches selected in these studies also provide arguments for discussion of the current limitations in the analysis of brain structural networks. To sum up, the first studies presented in this thesis illustrated the potential of brain structural network analysis to provide useful information on features of brain functional segregation and integration using reliable network metrics. In the other two studies alternative approaches were presented. The common discussion of the four studies enabled us to highlight the benefits and possibilities for the analysis of the connectome as well as some current limitations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epileptic seizures of focal origin are classically considered to arise from a focal epileptogenic zone and then spread to other brain regions. This is a key concept for semiological electro-clinical correlations, localization of relevant structural lesions, and selection of patients for epilepsy surgery. Recent development in neuro-imaging and electro-physiology and combinations, thereof, have been validated as contributory tools for focus localization. In parallel, these techniques have revealed that widespread networks of brain regions, rather than a single epileptogenic region, are implicated in focal epileptic activity. Sophisticated multimodal imaging and analysis strategies of brain connectivity patterns have been developed to characterize the spatio-temporal relationships within these networks by combining the strength of both techniques to optimize spatial and temporal resolution with whole-brain coverage and directional connectivity. In this paper, we review the potential clinical contribution of these functional mapping techniques as well as invasive electrophysiology in human beings and animal models for characterizing network connectivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

White matter connects different brain areas and applies electrical insulation to the neuron’s axons with myelin sheaths in order to enable quick signal transmission. Due to its modulatory properties in signal conduction, white matter plays an essential role in learning, cognition and psychiatric disorders (Fields, 2008a). In respect thereof, the non-invasive investigation of white matter anatomy and function in vivo provides the unique opportunity to explore the most complex organ of our body. Thus, the present thesis aimed to apply a multimodal neuroimaging approach to investigate different white matter properties in psychiatric and healthy populations. On the one hand, white matter microstructural properties were investigated in a psychiatric population; on the other hand, white matter metabolic properties were assessed in healthy adults providing basic information about the brain’s wiring entity. As a result, three research papers are presented here. The first paper assessed the microstructural properties of white matter in relation to a frequent epidemiologic finding in schizophrenia. As a result, reduced white matter integrity was observed in patients born in summer and autumn compared to patients born in winter and spring. Despite the large genetic basis of schizophrenia, accumulating evidence indicates that environmental exposures may be implicated in the development of schizophrenia (A. S. Brown, 2011). Notably, epidemiologic studies have shown a 5–8% excess of births during winter and spring for patients with schizophrenia on the Northern Hemisphere at higher latitudes (Torrey, Miller, Rawlings, & Yolken, 1997). Although the underlying mechanisms are unclear, the seasonal birth effect may indicate fluctuating environmental risk factors for schizophrenia. Thus, exposure to harmful factors during foetal development may result in the activation of pathologic neural circuits during adolescence or young adulthood, increasing the risk of schizophrenia (Fatemi & Folsom, 2009). While white matter development starts during the foetal period and continues until adulthood, its major development is accomplished by the age of two years (Brody, Kinney, Kloman, & Gilles, 1987; Huang et al., 2009). This indicates a vulnerability period of white matter that may coincide with the fluctuating environmental risk factors for schizophrenia. Since microstructural alterations of white matter in schizophrenia are frequently observed, the current study provided evidence for the neurodevelopmental hypothesis of schizophrenia. In the second research paper, the perfusion of white matter showed a positive correlation between white matter microstructure and its perfusion with blood across healthy adults. This finding was in line with clinical studies indicating a tight coupling between cerebral perfusion and WM health across subjects (Amann et al., 2012; Chen, Rosas, & Salat, 2013; Kitagawa et al., 2009). Although relatively little is known about the metabolic properties of white matter, different microstructural properties, such as axon diameter and myelination, might be coupled with the metabolic demand of white matter. Furthermore, the ability to detect perfusion signal in white matter was in accordance with a recent study showing that technical improvements, such as pseudo-continuous arterial spin labeling, enabled the reliable detection of white matter perfusion signal (van Osch et al., 2009). The third paper involved a collaboration within the same department to assess the interrelation between functional connectivity networks and their underlying structural connectivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the recent past, various intrinsic connectivity networks (ICN) have been identified in the resting brain. It has been hypothesized that the fronto-parietal ICN is involved in attentional processes. Evidence for this claim stems from task-related activation studies that show a joint activation of the implicated brain regions during tasks that require sustained attention. In this study, we used functional magnetic resonance imaging (fMRI) to demonstrate that functional connectivity within the fronto-parietal network at rest directly relates to attention. We applied graph theory to functional connectivity data from multiple regions of interest and tested for associations with behavioral measures of attention as provided by the attentional network test (ANT), which we acquired in a separate session outside the MRI environment. We found robust statistical associations with centrality measures of global and local connectivity of nodes within the network with the alerting and executive control subfunctions of attention. The results provide further evidence for the functional significance of ICN and the hypothesized role of the fronto-parietal attention network. Hum Brain Mapp , 2013. © 2013 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE To assess possible effects of working memory (WM) training on cognitive functionality, functional MRI and brain connectivity in patients with juvenile MS. METHODS Cognitive status, fMRI and inter-network connectivity were assessed in 5 cases with juvenile MS aged between 12 and 18 years. Afterwards they received a computerized WM training for four weeks. Primary cognitive outcome measures were WM (visual and verbal) and alertness. Activation patterns related to WM were assessed during fMRI using an N-Back task with increasing difficulty. Inter-network connectivity analyses were focused on fronto-parietal (left and right), default-mode (dorsal and ventral) and the anterior salience network. Cognitive functioning, fMRI and inter-network connectivity were reassessed directly after the training and again nine months following training. RESULTS Response to treatment was seen in two patients. These patients showed increased performance in WM and alertness after the training. These behavioural changes were accompanied by increased WM network activation and systematic changes in inter-network connectivity. The remaining participants were non-responders to treatment. Effects on cognitive performance were maintained up to nine months after training, whereas effects observed by fMRI disappeared. CONCLUSIONS Responders revealed training effects on all applied outcome measures. Disease activity and general intelligence may be factors associated with response to treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The default-mode network (DMN) was shown to have aberrant blood oxygenation-level-dependent (BOLD) activity in major depressive disorder (MDD). While BOLD is a relative measure of neural activity, cerebral blood flow (CBF) is an absolute measure. Resting-state CBF alterations have been reported in MDD. However, the association of baseline CBF and CBF fluctuations is unclear in MDD. Therefore, the aim was to investigate the CBF within the DMN in MDD, applying a strictly data-driven approach. In 22 MDD patients and 22 matched healthy controls, CBF was acquired using arterial spin labeling (ASL) at rest. A concatenated independent component analysis was performed to identify the DMN within the ASL data. The perfusion of the DMN and its nodes was quantified and compared between groups. The DMN was identified in both groups with high spatial similarity. Absolute CBF values within the DMN were reduced in MDD patients (p<0.001). However, after controlling for whole-brain gray matter CBF and age, the group difference vanished. In patients, depression severity was correlated with reduced perfusion in the DMN in the posterior cingulate cortex and the right inferior parietal lobe. Hypoperfusion within the DMN in MDD is not specific to the DMN. Still, depression severity was linked to DMN node perfusion, supporting a role of the DMN in depression pathobiology. The finding has implications for the interpretation of BOLD functional magnetic resonance imaging data in MDD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cerebral electrical activity is highly nonstationary because the brain reacts to ever changing external stimuli and continuously monitors internal control circuits. However, a large amount of energy is spent to maintain remarkably stationary activity patterns and functional inter-relations between different brain regions. Here we examine linear EEG correlations in the peri-ictal transition of focal onset seizures, which are typically understood to be manifestations of dramatically changing inter-relations. Contrary to expectations we find stable correlation patterns with a high similarity across different patients and different frequency bands. This skeleton of spatial correlations may be interpreted as a signature of standing waves of electrical brain activity constituting a dynamical ground state. Such a state could promote the formation of spatiotemporal neuronal assemblies and may be important for the integration of information stemming from different local circuits of the functional brain network.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated whether a pure perceptual stream is sufficient for probabilistic sequence learning to occur within a single session or whether correlated streams are necessary, whether learning is affected by the transition probability between sequence elements, and how the sequence length influences learning. In each of three experiments, we used six horizontally arranged stimulus displays which consisted of randomly ordered bigrams xo and ox. The probability of the next possible target location out of two was either .50/.50 or .75/.25 and was marked by an underline. In Experiment 1, a left vs. right key response was required for the x of a marked bigram in the pure perceptual learning condition and a response key press corresponding to the marked bigram location (out of 6) was required in the correlated streams condition (i.e., the ring, middle, or index finger of the left and right hand, respectively). The same probabilistic 3-element sequence was used in both conditions. Learning occurred only in the correlated streams condition. In Experiment 2, we investigated whether sequence length affected learning correlated sequences by contrasting the 3-elements sequence with a 6-elements sequence. Significant sequence learning occurred in all conditions. In Experiment 3, we removed a potential confound, that is, the sequence of hand changes. Under these conditions, learning occurred for the 3-element sequence only and transition probability did not affect the amount of learning. Together, these results indicate that correlated streams are necessary for probabilistic sequence learning within a single session and that sequence length can reduce the chances for learning to occur.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In line with current memory theories of a perception-memory continuum along the ventral visual pathway, there is evidence that the specific profile of enhanced memory in special populations (e.g. synaesthesia) is based on increased perceptual sensitivity. The main goal of this study was to test in a more general population, if increased perceptual sensitivity is indeed associated with enhanced memory performance. We measured ERPs in response to simple perceptual stimuli biasing either the ventral or the dorsal route and established if perceptual sensitivity in response to ventrally (but not dorsally) processed stimuli is associated with visual short term memory performance in a change detection task. Preliminary results confirm the hypothesis and strengthen the assumption of a perceptual-memory-continuum.