15 resultados para Bottini, Rubén
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The presynaptic terminal contains a complex network of filaments whose precise organization and functions are not yet understood. The cryoelectron tomography experiments reported in this study indicate that these structures play a prominent role in synaptic vesicle release. Docked synaptic vesicles did not make membrane to membrane contact with the active zone but were instead linked to it by tethers of different length. Our observations are consistent with an exocytosis model in which vesicles are first anchored by long (>5 nm) tethers that give way to multiple short tethers once vesicles enter the readily releasable pool. The formation of short tethers was inhibited by tetanus toxin, indicating that it depends on soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor complex assembly. Vesicles were extensively interlinked via a set of connectors that underwent profound rearrangements upon synaptic stimulation and okadaic acid treatment, suggesting a role of these connectors in synaptic vesicle mobilization and neurotransmitter release.
Resumo:
Blood translocation of bacterial-DNA has been described in patients with Crohn's disease (CD). The host's immune cell types cooperate to respond against bacterial insults. Some antimicrobial peptides are inducible after culture with bacterial products and a linkage has been established between them and NOD2/CARD15. The aim was to test whether defensins and cathelicidin (LL-37) expression and NOD2/CARD15 mutations in blood neutrophils are related to molecular bacterial translocation events in CD patients.
Resumo:
Dental professionals need adequate education in tobacco use prevention and cessation skills. The aim of this study was to identify the level of integration of tobacco education in undergraduate curricula of European dental schools.
Resumo:
The application of scientific-based conservation measures requires that sampling methodologies in studies modelling similar ecological aspects produce comparable results making easier their interpretation. We aimed to show how the choice of different methodological and ecological approaches can affect conclusions in nest-site selection studies along different Palearctic meta-populations of an indicator species. First, a multivariate analysis of the variables affecting nest-site selection in a breeding colony of cinereous vulture (Aegypius monachus) in central Spain was performed. Then, a meta-analysis was applied to establish how methodological and habitat-type factors determine differences and similarities in the results obtained by previous studies that have modelled the forest breeding habitat of the species. Our results revealed patterns in nesting-habitat modelling by the cinereous vulture throughout its whole range: steep and south-facing slopes, great cover of large trees and distance to human activities were generally selected. The ratio and situation of the studied plots (nests/random), the use of plots vs. polygons as sampling units and the number of years of data set determined the variability explained by the model. Moreover, a greater size of the breeding colony implied that ecological and geomorphological variables at landscape level were more influential. Additionally, human activities affected in greater proportion to colonies situated in Mediterranean forests. For the first time, a meta-analysis regarding the factors determining nest-site selection heterogeneity for a single species at broad scale was achieved. It is essential to homogenize and coordinate experimental design in modelling the selection of species' ecological requirements in order to avoid that differences in results among studies would be due to methodological heterogeneity. This would optimize best conservation and management practices for habitats and species in a global context.
Resumo:
Tree populations at the rear edge of species distribution are sensitive to climate stress and drought. However, growth responses of these tree populations to those stressors may vary along climatic gradients. To analyze growth responses to climate and drought using dendrochronology in rear-edge Pinus nigra populations located along an aridity gradient. Tree-ring width chronologies were built for the twentieth century and related to monthly climatic variables, a drought index (Standardized Precipitation-Evapotranspiration Index), and two atmospheric circulation patterns (North Atlantic and Western Mediterranean Oscillations). Growth was enhanced by wet and cold previous autumns and warm late winters before tree-ring formation. The influence of the previous year conditions on growth increased during the past century. Growth was significantly related to North Atlantic and Western Mediterranean Oscillations in two out of five sites. The strongest responses of growth to the drought index were observed in the most xeric sites. Dry conditions before tree-ring formation constrain growth in rear-edge P. nigra populations. The comparisons of climate-growth responses along aridity gradients allow characterizing the sensitivity of relict stands to climate warming.
Resumo:
The southernmost European natural and planted pine forests are among the most vulnerable areas to warming-induced drought decline. Both drought stress and management factors (e.g., stand origin or reduced thinning) may induce decline by reducing the water available to trees but their relative importances have not been properly assessed. The role of stand origin - densely planted vs. naturally regenerated stands - as a decline driver can be assessed by comparing the growth and vigor responses to drought of similar natural vs. planted stands. Here, we compare these responses in natural and planted Black pine (Pinus nigra) stands located in southern Spain. We analyze how environmental factors - climatic (temperature and precipitation anomalies) and site conditions - and biotic factors - stand structure (age, tree size, density) and defoliation by the pine processionary moth - drive radial growth and crown condition at stand and tree levels. We also assess the climatic trends in the study area over the last 60 years. We use dendrochronology, linear mixed-effects models of basal area increment and structural equation models to determine how natural and planted stands respond to drought and current competition intensity. We observed that a temperature rise and a decrease in precipitation during the growing period led to increasing drought stress during the late 20th century. Trees from planted stands experienced stronger growth reductions and displayed more severe crown defoliation after severe droughts than those from natural stands. High stand density negatively drove growth and enhanced crown dieback, particularly in planted stands. Also pine processionary moth defoliation was more severe in the growth of natural than in planted stands but affected tree crown condition similarly in both stand types. In response to drought, sharp growth reduction and widespread defoliation of planted Mediterranean pine stands indicate that they are more vulnerable and less resilient to drought stress than natural stands. To mitigate forest decline of planted stands in xeric areas such as the Mediterranean Basin, less dense and more diverse stands should be created through selective thinning or by selecting species or provenances that are more drought tolerant. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Enemy release is frequently posed as a main driver of invasiveness of alien species. However, an experimental multi-species test examining performance and herbivory of invasive alien, non-invasive alien and native plant species in the presence and absence of natural enemies is lacking. In a common garden experiment in Switzerland, we manipulated exposure of seven alien invasive, eight alien non-invasive and fourteen native species from six taxonomic groups to natural enemies (invertebrate herbivores), by applying a pesticide treatment under two different nutrient levels. We assessed biomass production, herbivore damage and the major herbivore taxa on plants. Across all species, plants gained significantly greater biomass under pesticide treatment. However, invasive, non-invasive and native species did not differ in their biomass response to pesticide treatment at either nutrient level. The proportion of leaves damaged on invasive species was significantly lower compared to native species, but not when compared to non-invasive species. However, the difference was lost when plant size was accounted for. There were no differences between invasive, non-invasive and native species in herbivore abundance. Our study offers little support for invertebrate herbivore release as a driver of plant invasiveness, but suggests that future enemy release studies should account for differences in plant size among species.
Resumo:
Most existing studies addressing the effects of invasive species on biodiversity focus on species richness ignoring better indicators of biodiversity and better predictors of ecosystem functioning such as the diversity of evolutionary histories (phylodiversity). Moreover, no previous study has separated the direct effect of alien plants on multiple ecosystem functions simultaneously (multifunctionality) from those indirect ones mediated by the decrease on biodiversity caused by alien plants. We aimed to analyze direct and indirect effects, mediated or not by its effect on biodiversity, of the invasive tree Ailanthus altissima on ecosystem multifunctionality of riparian habitats under Mediterranean climate. We measured vegetation attributes (species richness and phylodiversity) and several surrogates of ecosystem functioning (understory plant biomass, soil enzyme activities, available phosphorous and organic matter) in plots infested by A. altissima and in control (non-invaded) ones. We used structural equation modelling to tease apart the direct and indirect effects of A. altissima on ecosystem multifunctionality. Our results suggest that lower plant species richness, phylodiversity and multifunctionality were associated to the presence of A. altissima. When analyzing each function separately, we found that biodiversity has the opposite effect of the alien plant on all the different functions measured, therefore reducing the strength of the effect (either positive or negative) of A. altissima on them. This is one of the few existing studies addressing the effect of invasive species on phylodiversity and also studying the effect of invasive species on multiple ecosystem functions simultaneously.