50 resultados para Botta, Carlo, 1766-1837.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Famille de pasteurs, politiciens et entrepreneurs de Zofingue, attestée pour la première fois en 1527, lorsque leur aïeul Jean, tonnelier originaire de Nîmes, obtint la bourgeoisie de Zofingue. Michael (1521-1605), avoyer, l'un de ses cinq fils, est l'ancêtre de la branche des imprimeurs et éditeurs. Après lui, de nombreux R. consolidèrent durablement l'influence de la famille. A partir du XVIIIe s., divers membres firent des carrières politiques, tels Samuel (1706-1786), avoyer, et Rudolf Friedrich (1805-1886), président de la ville. Les R. furent aussi très liés à l'Eglise. Le fils de Michael, Moritz (1557-1615), fut pasteur et doyen à Zofingue. Jusqu'au XIXe s., la famille compta une trentaine d'ecclésiastiques, essentiellement des pasteurs officiant sur le territoire bernois, tels Johann Heinrich ( -> 3) et Michael ( -> 8). Les conseillers Beat (1712-1778) et Niklaus (1734-1766) furent les premiers R. actifs dans la production protoindustrielle de drap. D'autres négociants suivirent jusqu'au milieu du XIXe s. L'architecte Niklaus Emanuel (1744-1815) construisit l'hôtel de ville de Zofingue (1792-1795) de style baroque tardif. Johann Rudolf ( -> 4) se distingua sous la République helvétique (1798-1803). Samuel (1767-1826), conseiller municipal de Zofingue, créa les armoiries du canton d'Argovie en 1803. Les R. s'affirmèrent sur le plan cantonal avec Karl Ludwig ( -> 6), chancelier, et Arnold ( -> 1), conseiller d'Etat et plusieurs fois landamman, et sur le plan fédéral avec Johann Rudolf ( -> 5), conseiller national, et Gottlieb ( -> 2), conseiller aux Etats et chancelier de la Confédération. Johann Rudolf (1803-1874) fonda, en 1833, l'imprimerie Ringier à Zofingue, reprise par son fils Franz Emil (1837-1898). A partir de 1898, Paul August ( -> 9), représentant de la troisième génération d'imprimeurs, agrandit l'entreprise dont il fit la principale imprimerie et maison d'édition de Suisse. Cette expansion se poursuivit après 1960 sous son fils Hans (1906-2003). Avec les fils de celui-ci, Christoph (naissance1941, dans la firme jusqu'en 1991) et Michael (naissance1949), Ringier devint, à partir de 1985, une entreprise multinationale et multimédia. Bibliographie – F. Schoder, Ortsbürger von Zofingen, 1962 – P. Meier, T. Häussler, Zwischen Masse, Markt und Macht, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose calculation for 4 and 6 MeV electron beams of Varian linear accelerators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was a Monte Carlo (MC) based investigation of the impact of different radiation transport methods in collimators of a linear accelerator on photon beam characteristics, dose distributions, and efficiency. Thereby it is investigated if it is possible to use different simplifications in the radiation transport for some clinical situations in order to save calculation time.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents the implementation and validation of a dose calculation approach for deforming anatomical objects. Deformation is represented by deformation vector fields leading to deformed voxel grids representing the different deformation scenarios. Particle transport in the resulting deformed voxels is handled through the approximation of voxel surfaces by triangles in the geometry implementation of the Swiss Monte Carlo Plan framework. The focus lies on the validation methodology which uses computational phantoms representing the same physical object through regular and irregular voxel grids. These phantoms are chosen such that the new implementation for a deformed voxel grid can be compared directly with an established dose calculation algorithm for regular grids. Furthermore, separate validation of the aspects voxel geometry and the density changes resulting from deformation is achieved through suitable design of the validation phantom. We show that equivalent results are obtained with the proposed method and that no statistically significant errors are introduced through the implementation for irregular voxel geometries. This enables the use of the presented and validated implementation for further investigations of dose calculation on deforming anatomy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, the new high definition multileaf collimator (HD120 MLC) was commercialized by Varian Medical Systems providing high resolution in the center section of the treatment field. The aim of this work is to investigate the characteristics of the HD120 MLC using Monte Carlo (MC) methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monte Carlo (MC) based dose calculations can compute dose distributions with an accuracy surpassing that of conventional algorithms used in radiotherapy, especially in regions of tissue inhomogeneities and surface discontinuities. The Swiss Monte Carlo Plan (SMCP) is a GUI-based framework for photon MC treatment planning (MCTP) interfaced to the Eclipse treatment planning system (TPS). As for any dose calculation algorithm, also the MCTP needs to be commissioned and validated before using the algorithm for clinical cases. Aim of this study is the investigation of a 6 MV beam for clinical situations within the framework of the SMCP. In this respect, all parts i.e. open fields and all the clinically available beam modifiers have to be configured so that the calculated dose distributions match the corresponding measurements. Dose distributions for the 6 MV beam were simulated in a water phantom using a phase space source above the beam modifiers. The VMC++ code was used for the radiation transport through the beam modifiers (jaws, wedges, block and multileaf collimator (MLC)) as well as for the calculation of the dose distributions within the phantom. The voxel size of the dose distributions was 2mm in all directions. The statistical uncertainty of the calculated dose distributions was below 0.4%. Simulated depth dose curves and dose profiles in terms of [Gy/MU] for static and dynamic fields were compared with the corresponding measurements using dose difference and γ analysis. For the dose difference criterion of ±1% of D(max) and the distance to agreement criterion of ±1 mm, the γ analysis showed an excellent agreement between measurements and simulations for all static open and MLC fields. The tuning of the density and the thickness for all hard wedges lead to an agreement with the corresponding measurements within 1% or 1mm. Similar results have been achieved for the block. For the validation of the tuned hard wedges, a very good agreement between calculated and measured dose distributions was achieved using a 1%/1mm criteria for the γ analysis. The calculated dose distributions of the enhanced dynamic wedges (10°, 15°, 20°, 25°, 30°, 45° and 60°) met the criteria of 1%/1mm when compared with the measurements for all situations considered. For the IMRT fields all compared measured dose values agreed with the calculated dose values within a 2% dose difference or within 1 mm distance. The SMCP has been successfully validated for a static and dynamic 6 MV photon beam, thus resulting in accurate dose calculations suitable for applications in clinical cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron Monte Carlo (eMC) dose calculation algorithm available in the Eclipse treatment planning system (Varian Medical Systems) is based on the macro MC method and uses a beam model applicable to Varian linear accelerators. This leads to limitations in accuracy if eMC is applied to non-Varian machines. In this work eMC is generalized to also allow accurate dose calculations for electron beams from Elekta and Siemens accelerators. First, changes made in the previous study to use eMC for low electron beam energies of Varian accelerators are applied. Then, a generalized beam model is developed using a main electron source and a main photon source representing electrons and photons from the scattering foil, respectively, an edge source of electrons, a transmission source of photons and a line source of electrons and photons representing the particles from the scrapers or inserts and head scatter radiation. Regarding the macro MC dose calculation algorithm, the transport code of the secondary particles is improved. The macro MC dose calculations are validated with corresponding dose calculations using EGSnrc in homogeneous and inhomogeneous phantoms. The validation of the generalized eMC is carried out by comparing calculated and measured dose distributions in water for Varian, Elekta and Siemens machines for a variety of beam energies, applicator sizes and SSDs. The comparisons are performed in units of cGy per MU. Overall, a general agreement between calculated and measured dose distributions for all machine types and all combinations of parameters investigated is found to be within 2% or 2 mm. The results of the dose comparisons suggest that the generalized eMC is now suitable to calculate dose distributions for Varian, Elekta and Siemens linear accelerators with sufficient accuracy in the range of the investigated combinations of beam energies, applicator sizes and SSDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the Monte Carlo (MC) method allows accurate dose calculation for proton radiotherapy, its usage is limited due to long computing time. In order to gain efficiency, a new macro MC (MMC) technique for proton dose calculations has been developed. The basic principle of the MMC transport is a local to global MC approach. The local simulations using GEANT4 consist of mono-energetic proton pencil beams impinging perpendicularly on slabs of different thicknesses and different materials (water, air, lung, adipose, muscle, spongiosa, cortical bone). During the local simulation multiple scattering, ionization as well as elastic and inelastic interactions have been taken into account and the physical characteristics such as lateral displacement, direction distributions and energy loss have been scored for primary and secondary particles. The scored data from appropriate slabs is then used for the stepwise transport of the protons in the MMC simulation while calculating the energy loss along the path between entrance and exit position. Additionally, based on local simulations the radiation transport of neutrons and the generated ions are included into the MMC simulations for the dose calculations. In order to validate the MMC transport, calculated dose distributions using the MMC transport and GEANT4 have been compared for different mono-energetic proton pencil beams impinging on different phantoms including homogeneous and inhomogeneous situations as well as on a patient CT scan. The agreement of calculated integral depth dose curves is better than 1% or 1 mm for all pencil beams and phantoms considered. For the dose profiles the agreement is within 1% or 1 mm in all phantoms for all energies and depths. The comparison of the dose distribution calculated using either GEANT4 or MMC in the patient also shows an agreement of within 1% or 1 mm. The efficiency of MMC is up to 200 times higher than for GEANT4. The very good level of agreement in the dose comparisons demonstrate that the newly developed MMC transport results in very accurate and efficient dose calculations for proton beams.