52 resultados para Bone-graft
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To investigate the technical feasibility of harvesting a vascularized bone graft from the acromion pedicled on the acromial branch.
Resumo:
Bone graft incorporation depends on the orchestrated activation of numerous growth factors and cytokines in both the host and the graft. Prominent in this signaling cascade is BMP2. Although BMP2 is dispensable for bone formation, it is required for the initiation of bone repair; thus understanding the cellular mechanisms underlying bone regeneration driven by BMP2 is essential for improving bone graft therapies. In the present study, we assessed the role of Bmp2 in bone graft incorporation using mice in which Bmp2 has been removed from the limb prior to skeletal formation (Bmp2(cKO)). When autograft transplantations were performed in Bmp2cKO mice, callus formation and bone healing were absent. Transplantation of either a vital wild type (WT) bone graft into a Bmp2(cKO) host or a vital Bmp2(cKO) graft into a WT host also resulted in the inhibition of bone graft incorporation. Histological analyses of these transplants show that in the absence of BMP2, periosteal progenitors remain quiescent and healing is not initiated. When we analyzed the expression of Sox9, a marker of chondrogenesis, on the graft surface, we found it significantly reduced when BMP2 was absent in either the graft itself or the host, suggesting that local BMP2 levels drive periosteal cell condensation and subsequent callus cell differentiation. The lack of integrated healing in the absence of BMP2 was not due to the inability of periosteal cells to respond to BMP2. Healing was achieved when grafts were pre-soaked in rhBMP2 protein, indicating that periosteal progenitors remain responsive in the absence of BMP2. In contrast to the requirement for BMP2 in periosteal progenitor activation in vital bone grafts, we found that bone matrix-derived BMP2 does not significantly enhance bone graft incorporation. Taken together, our data show that BMP2 signaling is not essential for the maintenance of periosteal progenitors, but is required for the activation of these progenitors and their subsequent differentiation along the osteo-chondrogenic pathway. These results indicate that BMP2 will be among the signaling molecules whose presence will determine success or failure of new bone graft strategies.
Resumo:
OBJECTIVE: The stability of 2 fixation techniques for the tuberosities in patients with 3- or 4-part proximal humerus fractures treated with hemiarthroplasties was compared. DESIGN: Retrospective review of a nonrandomized sequential series of patients. SETTING: Level I university orthopaedic surgery department. PATIENTS: A consecutive series of 58 patients (average age, 64 years) from 1990 to 1999 with 3- and 4-part fractures of the proximal humerus. INTERVENTION: In group 1, 31 patients were treated with either a Neer or Aequalis shoulder prosthesis using nonabsorbable sutures and no bone graft for the reattachment of the tuberosities. In group 2, 27 patients were treated with either an Aequalis or Epoca shoulder prosthesis and a combination of cable fixation and bone grafting. MAIN OUTCOME MEASUREMENTS: At follow-up (average, 32 months), radiographs were taken to confirm tuberosity fixation or degree of displacement or resorption. Functional outcome was assessed by the Constant-Murley Score. RESULTS: Significantly more dislocated tuberosities were found radiographically in group 1 (10 of 13 in total, P = 0.011), and significantly more tuberosities were resorbed in group 1 (9 of 12 in total, P = 0.012). Significant differences in functional results among healed versus failed tuberosity fixation were observed for activity of daily living (P = 0.05), range of motion (P = 0.002), strength (P = 0.01), the total score (P = 0.008), and the passive rotation amplitude (P = 0.04). CONCLUSION: In hemiarthroplasties for proximal humeral fractures, the reattachment of the tuberosities with cable wire and bone grafting gives consistently better radiographic and functional results than with suture fixation alone.
Resumo:
BACKGROUND: Harvesting techniques can affect cellular parameters of autogenous bone grafts in vitro. Whether these differences translate to in vivo bone formation, however, remains unknown. OBJECTIVE: The purpose of this study was to assess the impact of different harvesting techniques on bone formation and graft resorption in vivo. MATERIAL AND METHODS: Four harvesting techniques were used: (i) corticocancellous blocks particulated by a bone mill; (ii) bone scraper; (iii) piezosurgery; and (iv) bone slurry collected from a filter device upon drilling. The grafts were placed into bone defects in the mandibles of 12 minipigs. The animals were sacrificed after 1, 2, 4 and 8 weeks of healing. Histology and histomorphometrical analyses were performed to assess bone formation and graft resorption. An explorative statistical analysis was performed. RESULTS: The amount of new bone increased, while the amount of residual bone decreased over time with all harvesting techniques. At all given time points, no significant advantage of any harvesting technique on bone formation was observed. The harvesting technique, however, affected bone formation and the amount of residual graft within the overall healing period. Friedman test revealed an impact of the harvesting technique on residual bone graft after 2 and 4 weeks. At the later time point, post hoc testing showed more newly formed bone in association with bone graft processed by bone mill than harvested by bone scraper and piezosurgery. CONCLUSIONS: Transplantation of autogenous bone particles harvested with four techniques in the present model resulted in moderate differences in terms of bone formation and graft resorption.
Resumo:
OBJECTIVES Recent studies suggest that a combination of enamel matrix derivative (EMD) with grafting material may improve periodontal wound healing/regeneration. Newly developed calcium phosphate (CaP) ceramics have been demonstrated a viable synthetic replacement option for bone grafting filler materials. AIMS This study aims to test the ability for EMD to adsorb to the surface of CaP particles and to determine the effect of EMD on downstream cellular pathways such as adhesion, proliferation, and differentiation of primary human osteoblasts and periodontal ligament (PDL) cells. MATERIALS AND METHODS EMD was adsorbed onto CaP particles and analyzed for protein adsorption patterns via scanning electron microscopy and high-resolution immunocytochemistry with an anti-EMD antibody. Cell attachment and cell proliferation were quantified using CellTiter 96 One Solution Cell Assay (MTS). Cell differentiation was analyzed using real-time PCR for genes encoding Runx2, alkaline phosphatase, osteocalcin, and collagen1α1, and mineralization was assessed using alizarin red staining. RESULTS Analysis of cell attachment revealed significantly higher number of cells attached to EMD-adsorbed CaP particles when compared to control and blood-adsorbed samples. EMD also significantly increased cell proliferation at 3 and 5 days post-seeding. Moreover, there were significantly higher mRNA levels of osteoblast differentiation markers including collagen1α1, alkaline phosphatase, and osteocalcin in osteoblasts and PDL cells cultured on EMD-adsorbed CaP particles at various time points. CONCLUSION The present study suggests that the addition of EMD to CaP grafting particles may influence periodontal regeneration by stimulating PDL cell and osteoblast attachment, proliferation, and differentiation. Future in vivo and clinical studies are required to confirm these findings. CLINICAL RELEVANCE The combination of EMD and CaP may represent an option for regenerative periodontal therapy in advanced intrabony defects.
Resumo:
OBJECTIVES Bone replacement grafting materials play an important role in regenerative dentistry. Despite a large array of tested bone-grafting materials, little information is available comparing the effects of bone graft density on in vitro cell behavior. Therefore, the aim of the present study is to compare the effects of cells seeded on bone grafts at low and high density in vitro for osteoblast adhesion, proliferation, and differentiation. MATERIALS AND METHODS The response of osteoblasts to the presence of a growth factor (enamel matrix derivative, (EMD)) in combination with low (8 mg per well) or high (100 mg per well) bone grafts (BG; natural bone mineral, Bio-Oss®) density, was studied and compared for osteoblast cell adhesion, proliferation, and differentiation as assessed by real-time PCR. Standard tissue culture plastic was used as a control with and without EMD. RESULTS The present study demonstrates that in vitro testing of bone-grafting materials is largely influenced by bone graft seeding density. Osteoblast adhesion was up to 50 % lower when cells were seeded on high-density BG when compared to low-density BG and control tissue culture plastic. Furthermore, proliferation was affected in a similar manner whereby cell proliferation on high-density BG (100 mg/well) was significantly increased when compared to that on low-density BG (8 mg/well). In contrast, cell differentiation was significantly increased on high-density BG as assessed by real-time PCR for markers collagen 1 (Col 1), alkaline phosphatase (ALP), and osteocalcin (OC) as well as alizarin red staining. The effects of EMD on osteoblast adhesion, proliferation, and differentiation further demonstrated that the bone graft seeding density largely controls in vitro results. EMD significantly increased cell attachment only on high-density BG, whereas EMD was able to further stimulate cell proliferation and differentiation of osteoblasts on control culture plastic and low-density BG when compared to high-density BG. CONCLUSION The results from the present study demonstrate that the in vitro conditions largely influence cell behavior of osteoblasts seeded on bone grafts and in vitro testing. CLINICAL RELEVANCE These results also illustrate the necessity for careful selection of bone graft seeding density to optimize in vitro testing and provide the clinician with a more accurate description of the osteopromotive potential of bone grafts.
Resumo:
To evaluate a new surgical method, using calvarial bone graft combined with a wedge of irradiated homologous costal cartilage, for the revision repair of posttraumatic enophthalmos.
Resumo:
The osteogenic potential of autogenous bone grafts is superior to that of allografts and xenografts because of their ability to release osteoinductive growth factors and provide a natural osteoconductive surface for cell attachment and growth. In this in vitro study, autogenous bone particles were harvested by four commonly used techniques and compared for their ability to promote an osteogenic response. Primary osteoblasts were isolated and seeded on autogenous bone grafts prepared from the mandibles of miniature pigs with a bone mill, piezo-surgery, bone scraper, and bone drill (bone slurry). The osteoblast cultures were compared for their ability to promote cell attachment, proliferation, and differentiation. After 4 and 8 hrs, significantly higher cell numbers were associated with bone mill and bone scraper samples compared with those acquired by bone slurry and piezo-surgery. Similar patterns were consistently observed up to 5 days. Furthermore, osteoblasts seeded on bone mill and scraper samples expressed significantly elevated mRNA levels of collagen, osteocalcin, and osterix at 3 and 14 days and produced more mineralized tissue as assessed by alizarin red staining. These results suggest that the larger bone graft particles produced by bone mill and bone scraper techniques have a higher osteogenic potential than bone slurry and piezo-surgery.
Resumo:
Limitations in the use of autologous bone graft, which is the gold standard therapy in bone defect healing, drive the search for alternative treatments. In this study the influence of rhTGFbeta-3 on mechanical and radiological parameters of a healing bone defect in the sheep tibia was assessed. In the sheep, an 18-mm long osteoperiosteal defect in the tibia was treated by rhTGFbeta-3 seeded on a poly(L/DL-lactide) carrier (n = 4). In a second group (n = 4), the defect was treated by the carrier only, in a third group (n = 4) by autologous cancellous bone graft, and in a fourth group (n = 2) the defect remained blank. The healing process of the defect was assessed by weekly in vivo stiffness measurements and radiology as well as by quantitative computed tomographic assessment of bone mineral density (BMD) every 4 weeks. The duration of the experiment was 12 weeks under loading conditions. In the bone graft group, a marginally significant higher increase in stiffness was observed than in the PLA/rhTGFbeta-3 group (p = 0.06) and a significantly higher increase than in the PLA-only group (p = 0.03). The radiographic as well as the computed tomographic evaluation yielded significant differences between the groups (p = 0.03), indicating the bone graft treatment (bone/per area, 83%; BMD, 0.57 g/cm(3)) performing better than the PLA/rhTGFbeta-3 (38%; 0.23 g/cm(3)) and the PLA-only treatment (2.5%; 0.09 g/cm(3)), respectively. Regarding the mechanical and radiological parameters assessed in this study, we conclude that rhTGFbeta-3 has a promoting effect on bone regeneration. However, under the conditions of this study, this effect does not reach the potential of autologous cancellous bone graft transplantation.
Resumo:
Tissue grafts are implanted in orthopedic surgery every day. In order to minimize infection risk, bone allografts are often delipidated with supercritical CO2 and sterilized prior to implantation. This treatment may, however, impair the mechanical behavior of the bone graft tissue. The goal of this study was to determine clinically relevant mechanical properties of treated/sterilized human trabecular bone grafts, e.g. the apparent modulus, strength, and the ability to absorb energy during compaction. They were compared with results of identical experiments performed previously on untreated/fresh frozen human trabecular bone from the same anatomical site (Charlebois, 2008). We tested the hypothesis that the morphology–mechanical property relationships of treated cancellous allografts are similar to those of fresh untreated bone. The morphology of the allografts was determined by μCT. Subsequently, cylindrical samples were tested in unconfined and confined compression. To account for various morphologies, the experimental data was fitted to phenomenological mechanical models for elasticity, strength, and dissipated energy density based on bone volume fraction (BV/TV) and the fabric tensor determined by MIL. The treatment/sterilization process does not appear to influence bone graft stiffness. However, strength and energy dissipation of the bone grafts were found to be significantly reduced by 36% to 47% and 66% to 81%, respectively, for a broad range of volume fraction (0.14 < BV/TV < 0.39) and degree of anisotropy (1.24 < DA < 2.18). Since the latter properties are strongly dominated by BV/TV, the clinical consequences of this reduction can be compensated by using grafts with lower porosity. The data of this study suggests that an increase of 5–10% in BV/TV is sufficient to compensate for the reduced post-yield mechanical properties of treated/sterilized bone in monotonic compression. In applications where graft stiffness needs to be matched and strength is not a concern, treated allograft with the same BV/TV as an appropriate fresh bone graft may be used.
Resumo:
OBJECTIVES Previously, the use of enamel matrix derivative (EMD) in combination with a natural bone mineral (NBM) was able to stimulate periodontal ligament cell and osteoblast proliferation and differentiation. Despite widespread use of EMD for periodontal applications, the effects of EMD on bone regeneration are not well understood. The aim of the present study was to test the ability of EMD on bone regeneration in a rat femur defect model in combination with NBM. MATERIALS AND METHODS Twenty-seven rats were treated with either NBM or NBM + EMD and assigned to histological analysis at 2, 4, and 8 weeks. Defect morphology and mineralized bone were assessed by μCT. For descriptive histology, hematoxylin and eosin staining and Safranin O staining were performed. RESULTS Significantly more newly formed trabecular bone was observed at 4 weeks around the NBM particles precoated with EMD when compared with NBM particles alone. The drilled control group, in contrast, achieved minimal bone regeneration at all three time points (P < 0.05). CONCLUSIONS The present results may suggest that EMD has the ability to enhance the speed of new bone formation when combined with NBM particles in rat osseous defects. CLINICAL RELEVANCE These findings may provide additional clinical support for the combination of EMD with bone graft for the repair of osseous and periodontal intrabony defects.
Resumo:
OBJECTIVE Over 15 years have passed since an enamel matrix derivative (EMD) was introduced as a biologic agent capable of periodontal regeneration. Histologic and controlled clinical studies have provided evidence for periodontal regeneration and substantial clinical improvements following its use. The purpose of this review article was to perform a systematic review comparing the eff ect of EMD when used alone or in combination with various types of bone grafting material. DATA SOURCES A literature search was conducted on several medical databases including Medline, EMBASE, LILACS, and CENTRAL. For study inclusion, all studies that used EMD in combination with a bone graft were included. In the initial search, a total of 820 articles were found, 71 of which were selected for this review article. Studies were divided into in vitro, in vivo, and clinical studies. The clinical studies were subdivided into four subgroups to determine the eff ect of EMD in combination with autogenous bone, allografts, xenografts, and alloplasts. RESULTS The analysis from the present study demonstrates that while EMD in combination with certain bone grafts is able to improve the regeneration of periodontal intrabony and furcation defects, direct evidence supporting the combination approach is still missing. CONCLUSION Further controlled clinical trials are required to explain the large variability that exists amongst the conducted studies.