18 resultados para Bone stiffness
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
As our population ages, more individuals suffer from osteoporosis. This disease leads to impaired trabecular architecture and increased fracture risk. It is essential to understand how morphological and mechanical properties of the cancellous bone are related. Morphologyelasticity relationships based on bone volume fraction (BV/TV) and fabric anisotropy explain up to 98% of the variation in elastic properties. Yet, other morphological variables such as individual trabeculae segmentation (ITS) and trabecular bone score (TBS) could improve the stiffness predictions. A total of 743 micro-computed tomography reconstructions of cubic trabecular bone samples extracted from femur, radius, vertebrae and iliac crest were analysed. Their morphology was assessed via 25 variables and their stiffness tensor (inline image) was computed from six independent load cases using micro finite element analyses. Variance inflation factors were calculated to evaluate collinearity between morphological variables and decide upon their inclusion in morphology-elasticity relationships. The statistically admissible morphological variables were included in a multi-linear regression modelling the dependent variable inline image. The contribution of each independent variable was evaluated (ANOVA). Our results show that BV/TV is the best determinant of inline image (inline image=0.889), especially in combination with fabric (inline image=0.968). Including the other independent predictors hardly affected the amount of variance explained by the model (inline image=0.975). Across all anatomical sites, BV/TV explained 87% of the variance of the bone elastic properties. Fabric further described 10% of the bone stiffness, but the improvement in variance explanation by adding other independent factors was marginal (<1%). These findings confirm that BV/TV and fabric are the best determinants of trabecular bone stiffness and show, against common belief, that other morphological variables do not bring any further contribution. These overall conclusions remain to be confirmed for specific bone diseases and post-elastic properties.
Resumo:
Bone pathologies as detected on MRI are associated with the presence of pain in knee osteoarthritis (OA). The authors examined whether bone attrition assessed on x-rays was associated with pain, stiffness and disability.
Resumo:
Background It has been demonstrated that frequency modulation of loading influences cellular response and metabolism in 3D tissues such as cartilage, bone and intervertebral disc. However, the mechano-sensitivity of cells in linear tissues such as tendons or ligaments might be more sensitive to changes in strain amplitude than frequency. Here, we hypothesized that tenocytes in situ are mechano-responsive to random amplitude modulation of strain. Methods We compared stochastic amplitude-modulated versus sinusoidal cyclic stretching. Rabbit tendon were kept in tissue-culture medium for twelve days and were loaded for 1h/day for six of the total twelve culture days. The tendons were randomly subjected to one of three different loading regimes: i) stochastic (2 – 7% random strain amplitudes), ii) cyclic_RMS (2–4.42% strain) and iii) cyclic_high (2 - 7% strain), all at 1 Hz and for 3,600 cycles, and one unloaded control. Results At the end of the culture period, the stiffness of the “stochastic” group was significantly lower than that of the cyclic_RMS and cyclic_high groups (both, p < 0.0001). Gene expression of eleven anabolic, catabolic and inflammatory genes revealed no significant differences between the loading groups. Conclusions We conclude that, despite an equivalent metabolic response, stochastically stretched tendons suffer most likely from increased mechanical microdamage, relative to cyclically loaded ones, which is relevant for tendon regeneration therapies in clinical practice.
Resumo:
Limitations in the use of autologous bone graft, which is the gold standard therapy in bone defect healing, drive the search for alternative treatments. In this study the influence of rhTGFbeta-3 on mechanical and radiological parameters of a healing bone defect in the sheep tibia was assessed. In the sheep, an 18-mm long osteoperiosteal defect in the tibia was treated by rhTGFbeta-3 seeded on a poly(L/DL-lactide) carrier (n = 4). In a second group (n = 4), the defect was treated by the carrier only, in a third group (n = 4) by autologous cancellous bone graft, and in a fourth group (n = 2) the defect remained blank. The healing process of the defect was assessed by weekly in vivo stiffness measurements and radiology as well as by quantitative computed tomographic assessment of bone mineral density (BMD) every 4 weeks. The duration of the experiment was 12 weeks under loading conditions. In the bone graft group, a marginally significant higher increase in stiffness was observed than in the PLA/rhTGFbeta-3 group (p = 0.06) and a significantly higher increase than in the PLA-only group (p = 0.03). The radiographic as well as the computed tomographic evaluation yielded significant differences between the groups (p = 0.03), indicating the bone graft treatment (bone/per area, 83%; BMD, 0.57 g/cm(3)) performing better than the PLA/rhTGFbeta-3 (38%; 0.23 g/cm(3)) and the PLA-only treatment (2.5%; 0.09 g/cm(3)), respectively. Regarding the mechanical and radiological parameters assessed in this study, we conclude that rhTGFbeta-3 has a promoting effect on bone regeneration. However, under the conditions of this study, this effect does not reach the potential of autologous cancellous bone graft transplantation.
Resumo:
Poly(methyl methacrylate) (PMMA) is by far the most frequently used bone substitute material for vertebroplasty. However, there are serious complications, such as cement leakage and an increased fracture rate of the adjacent vertebral bodies. The latter may be related to the mechanical properties of the augmented segment within the osteoporotic spine. A possible counter-measure is prophylactic augmentation at additional levels, but this aggravates the risk for the patient. Introduction of pores is a possible method to reduce the inherent high stiffness of PMMA. This study investigates the effect of porosity on the mechanical properties of PMMA bone cement. Different fractions of a highly viscous liquid were mixed into the PMMA during preparation. An open-porous material with adjustable mechanical properties resulted after removal of the aqueous phase. Different radiopacifiers were admixed to investigate their suitability for vertebroplasty. The final material was characterized mechanically by compressive testing, microscopically and radiologically. In addition, the monomer release subsequent to hardening was measured by means of gas chromatography. The Young's modulus in compression could be varied between 2800 +/- 70 MPa and 120 +/- 150 MPa, and the compression ultimate strength between 170 +/- 5 MPa and 8 +/- 9 MPa for aqueous fractions ranging between 0 and 50% of volume. Only a slight decrease of the Young's modulus and small changes of ultimate strength were found when the mixing time was increased. An organic hydrophilic and lipophilic radiopacifier led to a higher Young's modulus of the porous material; however, the ultimate strength was not significantly affected by adding different radiopacifiers to the porous cement. The radiopacity was lost after washing the aqueous phase out of the pores. No separation occurred between the aqueous and the PMMA phase during injection into an open porous ceramic material. The monomer released was found to increase for increasing aqueous fractions, but remained comparable in magnitude to standard PMMA. This study demonstrates that a conventional PMMA can be modified to obtain a range of mechanical properties, including those of osteoporotic bone.
Resumo:
The use of polymethylmethacrylate (PMMA) cement to reinforce fragile or broken vertebral bodies (vertebroplasty) leads to extensive bone stiffening. Fractures in the adjacent vertebrae may be the consequence of this procedure. PMMA with a reduced Young's modulus may be more suitable. The goal of this study was to produce and characterize stiffness adapted PMMA bone cements. Porous PMMA bone cements were produced by combining PMMA with various volume fractions of an aqueous sodium hyaluronate solution. Porosity, Young's modulus, yield strength, polymerization temperature, setting time, viscosity, injectability, and monomer release of those porous cements were investigated. Samples presented pores with diameters in the range of 25-260 microm and porosity up to 56%. Young's modulus and yield strength decreased from 930 to 50 MPa and from 39 to 1.3 MPa between 0 and 56% porosity, respectively. The polymerization temperature decreased from 68 degrees C (0%, regular cement) to 41 degrees C for cement having 30% aqueous fraction. Setting time decreased from 1020 s (0%, regular cement) to 720 s for the 30% composition. Viscosity of the 30% composition (145 Pa s) was higher than the ones received from regular cement and the 45% composition (100-125 Pa s). The monomer release was in the range of 4-10 mg/mL for all porosities; showing no higher release for the porous materials. The generation of pores using an aqueous gel seems to be a promising method to make the PMMA cement more compliant and lower its mechanical properties to values close to those of cancellous bone.
Resumo:
To study the time course of demineralization and fracture incidence after spinal cord injury (SCI), 100 paraplegic men with complete motor loss were investigated in a cross-sectional study 3 months to 30 years after their traumatic SCI. Fracture history was assessed and verified using patients' files and X-rays. BMD of the lumbar spine (LS), femoral neck (FN), distal forearm (ultradistal part = UDR, 1/3 distal part = 1/3R), distal tibial diaphysis (TDIA), and distal tibial epiphysis (TEPI) was measured using DXA. Stiffness of the calcaneus (QUI.CALC), speed of sound of the tibia (SOS.TIB), and amplitude-dependent SOS across the proximal phalanges (adSOS.PHAL) were measured using QUS. Z-Scores of BMD and quantitative ultrasound (QUS) were plotted against time-since-injury and compared among four groups of paraplegics stratified according to time-since-injury (<1 year, stratum I; 1-9 years, stratum II; 10-19 years, stratum III; 20-29 years, stratum IV). Biochemical markers of bone turnover (deoxypyridinoline/creatinine (D-pyr/Cr), osteocalcin, alkaline phosphatase) and the main parameters of calcium phosphate metabolism were measured. Fifteen out of 98 paraplegics had sustained a total of 39 fragility fractures within 1,010 years of observation. All recorded fractures were fractures of the lower limbs, mean time to first fracture being 8.9 +/- 1.4 years. Fracture incidence increased with time-after-SCI, from 1% in the first 12 months to 4.6%/year in paraplegics since >20 years ( p<.01). The overall fracture incidence was 2.2%/year. Compared with nonfractured paraplegics, those with a fracture history had been injured for a longer time ( p<.01). Furthermore, they had lower Z-scores at FN, TEPI, and TDIA ( p<.01 to <.0001), the largest difference being observed at TDIA, compared with the nonfractured. At the lower limbs, BMD decreased with time at all sites ( r=.49 to.78, all p<.0001). At FN and TEPI, bone loss followed a log curve which leveled off between 1 to 3 years after injury. In contrast, Z-scores of TDIA continuously decreased even beyond 10 years after injury. LS BMD Z-score increased with time-since-SCI ( p<.05). Similarly to DXA, QUS allowed differentiation of early and rapid trabecular bone loss (QUI.CALC) vs slow and continuous cortical bone loss (SOS.TIB). Biochemical markers reflected a disproportion between highly elevated bone resorption and almost normal bone formation early after injury. Turnover declined following a log curve with time-after-SCI, however, D-pyr/Cr remained elevated in 30% of paraplegics injured >10 years. In paraplegic men early (trabecular) and persistent (cortical) bone loss occurs at the lower limbs and leads to an increasing fracture incidence with time-after-SCI.
Resumo:
Recent clinical trials have reported favorable early results for transpedicular vertebral cement reinforcement of osteoporotic vertebral insufficiencies. There is, however, a lack of basic data on the application, safety and biomechanical efficacy of materials such as polymethyl-methacrylate (PMMA) and calciumphospate (CaP) cements. The present study analyzed 33 vertebral pairs from five human cadaver spines. Thirty-nine vertebrae were osteoporotic (bone mineral density < 0.75 g/cm2), 27 showed nearly normal values. The cranial vertebra of each pair was augmented with either PMMA (Palacos E-Flow) or experimental brushite cement (EBC), with the caudal vertebra as a control. PMMA and EBC were easy to inject, and vertebral fillings of 20-50% were achieved. The maximal possible filling was inversely correlated to the bone mineral density (BMD) values. Cement extrusion into the spinal canal was observed in 12% of cases. All specimens were subjected to axial compression tests in a displacement-controlled mode. From load-displacement curves, the stiffness, S, and the maximal force before failure, Fmax, were determined. Compared with the native control vertebrae, a statistically significant increase in vertebral stiffness and Fmax was observed by the augmentation. With PMMA the stiffness increased by 174% (P = 0.018) and Fmax by 195% (P = 0.001); the corresponding augmentation with EBC was 120% (P = 0.03) and 113% (P = 0.002). The lower the initial BMD, the more pronounced was the augmentation effect. Both PMMA and EBC augmentation reliably and significantly raised the stiffness and maximal tolerable force until failure in osteoporotic vertebral bodies. In non-porotic specimens, no significant increase was achieved.
Resumo:
One goal of interbody fusion is to increase the height of the degenerated disc space. Interbody cages in particular have been promoted with the claim that they can maintain the disc space better than other methods. There are many factors that can affect the disc height maintenance, including graft or cage design, the quality of the surrounding bone and the presence of supplementary posterior fixation. The present study is an in vitro biomechanical investigation of the compressive behaviour of three different interbody cage designs in a human cadaveric model. The effect of bone density and posterior instrumentation were assessed. Thirty-six lumbar functional spinal units were instrumented with one of three interbody cages: (1) a porous titanium implant with endplate fit (Stratec), (2) a porous, rectangular carbon-fibre implant (Brantigan) and (3) a porous, cylindrical threaded implant (Ray). Posterior instrumentation (USS) was applied to half of the specimens. All specimens were subjected to axial compression displacement until failure. Correlations between both the failure load and the load at 3 mm displacement with the bone density measurements were observed. Neither the cage design nor the presence of posterior instrumentation had a significant effect on the failure load. The loads at 3 mm were slightly less for the Stratec cage, implying lower axial stiffness, but were not different with posterior instrumentation. The large range of observed failure loads overlaps the potential in vivo compressive loads, implying that failure of the bone-implant interface may occur clinically. Preoperative measurements of bone density may be an effective tool to predict settling around interbody cages.
Resumo:
A new anisotropic elastic-viscoplastic damage constitutive model for bone is proposed using an eccentric elliptical yield criterion and nonlinear isotropic hardening. A micromechanics-based multiscale homogenization scheme proposed by Reisinger et al. is used to obtain the effective elastic properties of lamellar bone. The dissipative process in bone is modeled as viscoplastic deformation coupled to damage. The model is based on an orthotropic ecuntric elliptical criterion in stress space. In order to simplify material identification, an eccentric elliptical isotropic yield surface was defined in strain space, which is transformed to a stress-based criterion by means of the damaged compliance tensor. Viscoplasticity is implemented by means of the continuous Perzyna formulation. Damage is modeled by a scalar function of the accumulated plastic strain D(κ) , reducing all element s of the stiffness matrix. A polynomial flow rule is proposed in order to capture the rate-dependent post-yield behavior of lamellar bone. A numerical algorithm to perform the back projection on the rate-dependent yield surface has been developed and implemented in the commercial finite element solver Abaqus/Standard as a user subroutine UMAT. A consistent tangent operator has been derived and implemented in order to ensure quadratic convergence. Correct implementation of the algorithm, convergence, and accuracy of the tangent operator was tested by means of strain- and stress-based single element tests. A finite element simulation of nano- indentation in lamellar bone was finally performed in order to show the abilities of the newly developed constitutive model.
Resumo:
Tissue grafts are implanted in orthopedic surgery every day. In order to minimize infection risk, bone allografts are often delipidated with supercritical CO2 and sterilized prior to implantation. This treatment may, however, impair the mechanical behavior of the bone graft tissue. The goal of this study was to determine clinically relevant mechanical properties of treated/sterilized human trabecular bone grafts, e.g. the apparent modulus, strength, and the ability to absorb energy during compaction. They were compared with results of identical experiments performed previously on untreated/fresh frozen human trabecular bone from the same anatomical site (Charlebois, 2008). We tested the hypothesis that the morphology–mechanical property relationships of treated cancellous allografts are similar to those of fresh untreated bone. The morphology of the allografts was determined by μCT. Subsequently, cylindrical samples were tested in unconfined and confined compression. To account for various morphologies, the experimental data was fitted to phenomenological mechanical models for elasticity, strength, and dissipated energy density based on bone volume fraction (BV/TV) and the fabric tensor determined by MIL. The treatment/sterilization process does not appear to influence bone graft stiffness. However, strength and energy dissipation of the bone grafts were found to be significantly reduced by 36% to 47% and 66% to 81%, respectively, for a broad range of volume fraction (0.14 < BV/TV < 0.39) and degree of anisotropy (1.24 < DA < 2.18). Since the latter properties are strongly dominated by BV/TV, the clinical consequences of this reduction can be compensated by using grafts with lower porosity. The data of this study suggests that an increase of 5–10% in BV/TV is sufficient to compensate for the reduced post-yield mechanical properties of treated/sterilized bone in monotonic compression. In applications where graft stiffness needs to be matched and strength is not a concern, treated allograft with the same BV/TV as an appropriate fresh bone graft may be used.
Resumo:
Summary Changes of the bone formation marker PINP correlated positively with improvements in vertebral strength in men with glucocorticoid-induced osteoporosis (GIO) who received 18-month treatment with teriparatide, but not with risedronate. These results support the use of PINP as a surrogate marker of bone strength in GIO patients treated with teriparatide. Introduction To investigate the correlations between biochemical markers of bone turnover and vertebral strength estimated by finite element analysis (FEA) in men with GIO. Methods A total of 92 men with GIO were included in an 18-month, randomized, open-label trial of teriparatide (20 μg/day, n = 45) and risedronate (35 mg/week, n = 47). High-resolution quantitative computed tomography images of the 12th thoracic vertebra obtained at baseline, 6 and 18 months were converted into digital nonlinear FE models and subjected to anterior bending, axial compression and torsion. Stiffness and strength were computed for each model and loading mode. Serum biochemical markers of bone formation (amino-terminal-propeptide of type I collagen [PINP]) and bone resorption (type I collagen cross-linked C-telopeptide degradation fragments [CTx]) were measured at baseline, 3 months, 6 months and 18 months. A mixed-model of repeated measures analysed changes from baseline and between-group differences. Spearman correlations assessed the relationship between changes from baseline of bone markers with FEA variables. Results PINP and CTx levels increased in the teriparatide group and decreased in the risedronate group. FEA-derived parameters increased in both groups, but were significantly higher at 18 months in the teriparatide group. Significant positive correlations were found between changes from baseline of PINP at 3, 6 and 18 months with changes in FE strength in the teriparatide-treated group, but not in the risedronate group. Conclusions Positive correlations between changes in a biochemical marker of bone formation and improvement of biomechanical properties support the use of PINP as a surrogate marker of bone strength in teriparatide-treated GIO patients.
Resumo:
INTRODUCTION The omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are the immediate precursors to a number of important mediators of immunity, inflammation and bone function, with products of omega-6 generally thought to promote inflammation and favour bone resorption. Western diets generally provide a 10 to 20-fold deficit in omega-3 PUFAs compared with omega-6, and this is thought to have contributed to the marked rise in incidence of disorders of modern human societies, such as heart disease, colitis and perhaps osteoporosis. Many of our food production animals, fed on grains rich in omega-6, are also exposed to a dietary deficit in omega-3, with perhaps similar health consequences. Bone fragility due to osteoporotic changes in laying hens is a major economic and welfare problem, with our recent estimates of breakage rates indicating up to 95% of free range hens suffer breaks during lay. METHODS Free range hens housed in full scale commercial systems were provided diets supplemented with omega-3 alpha linolenic acid, and the skeletal benefits were investigated by comparison to standard diets rich in omega-6. RESULTS There was a significant 40-60% reduction in keel bone breakage rate, and a corresponding reduction in breakage severity in the omega-3 supplemented hens. There was significantly greater bone density and bone mineral content, alongside increases in total bone and trabecular volumes. The mechanical properties of the omega-3 supplemented hens were improved, with strength, energy to break and stiffness demonstrating significant increases. Alkaline phosphatase (an osteoblast marker) and tartrate-resistant acid phosphatase (an osteoclast marker) both showed significant increases with the omega-3 diets, indicating enhanced bone turnover. This was corroborated by the significantly lower levels of the mature collagen crosslinks, hydroxylysyl pyridinoline, lysyl pyridinoline and histidinohydroxy-lysinonorleucine, with a corresponding significant shift in the mature:immature crosslink ratio. CONCLUSIONS The improved skeletal health in laying hens corresponds to as many as 68million fewer hens suffering keel fractures in the EU each year. The biomechanical and biochemical evidence suggests that increased bone turnover has enhanced the bone mechanical properties, and that this may suggest potential benefits for human osteoporosis.
Resumo:
Skeletal diseases such as osteoporosis impose a severe socio-economic burden to ageing societies. Decreasing mechanical competence causes a rise in bone fracture incidence and mortality especially after the age of 65 y. The mechanisms of how bone damage is accumulated under different loading modes and its impact on bone strength are unclear. We hypothesise that damage accumulated in one loading mode increases the fracture risk in another. This study aimed at identifying continuum damage interactions between tensile and compressive loading modes. We propose and identify the material constants of a novel piecewise 1D constitutive model capable of describing the mechanical response of bone in combined tensile and compressive loading histories. We performed several sets of loading–reloading experiments to compute stiffness, plastic strains, and stress-strain curves. For tensile overloading, a stiffness reduction (damage) of 60% at 0.65% accumulated plastic strain was detectable as stiffness reduction of 20% under compression. For compressive overloading, 60% damage at 0.75% plastic strain was detectable as a stiffness reduction of 50% in tension. Plastic strain at ultimate stress was the same in tension and compression. Compression showed softening and tension exponential hardening in the post-yield regime. The hardening behaviour in compression is unaffected by a previous overload in tension but the hardening behaviour in tension is affected by a previous overload in compression as tensile reloading strength is significantly reduced. This paper demonstrates how damage accumulated under one loading mode affects the mechanical behaviour in another loading mode. To explain this and to illustrate a possible implementation we proposed a theoretical model. Including such loading mode dependent damage and plasticity behaviour in finite element models will help to improve fracture risk analysis of whole bones and bone implant structures.