7 resultados para Bone organ

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intervertebral disc (IVD) is the joint of the spine connecting vertebra to vertebra. It functions to transmit loading of the spine and give flexibility to the spine. It composes of three compartments: the innermost nucleus pulposus (NP) encompassing by the annulus fibrosus (AF), and two cartilaginous endplates connecting the NP and AF to the vertebral body on both sides. Discogenic pain possibly caused by degenerative intervertebral disc disease (DDD) and disc herniations has been identified as a major problem in our modern society. To study possible mechanisms of IVD degeneration, in vitro organ culture systems with live disc cells are highly appealing. The in vitro culture of intact bovine coccygeal IVDs has advanced to a relevant model system, which allows the study of mechano-biological aspects in a well-controlled physiological and mechanical environment. Bovine tail IVDs can be obtained relatively easy in higher numbers and are very similar to the human lumbar IVDs with respect to cell density, cell population and dimensions. However, previous bovine caudal IVD harvesting techniques retaining cartilaginous endplates and bony endplates failed after 1-2 days of culture since the nutrition pathways were obviously blocked by clotted blood. IVDs are the biggest avascular organs, thus, the nutrients to the cells in the NP are solely dependent on diffusion via the capillary buds from the adjacent vertebral body. Presence of bone debris and clotted blood on the endplate surfaces can hinder nutrient diffusion into the center of the disc and compromise cell viability. Our group established a relatively quick protocol to "crack"-out the IVDs from the tail with a low risk for contamination. We are able to permeabilize the freshly-cut bony endplate surfaces by using a surgical jet lavage system, which removes the blood clots and cutting debris and very efficiently reopens the nutrition diffusion pathway to the center of the IVD. The presence of growth plates on both sides of the vertebral bone has to be avoided and to be removed prior to culture. In this video, we outline the crucial steps during preparation and demonstrate the key to a successful organ culture maintaining high cell viability for 14 days under free swelling culture. The culture time could be extended when appropriate mechanical environment can be maintained by using mechanical loading bioreactor. The technique demonstrated here can be extended to other animal species such as porcine, ovine and leporine caudal and lumbar IVD isolation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Homing of human bone marrow-derived mesenchymal stem cells (BMSCs) was studied using ex vivo cultured bovine caudal intervertebral discs (IVDs).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: Bone attrition probably constitutes remodeling of the bone, resulting in flattening or depression of the articular surfaces. Defining bone attrition is challenging because it is an accentuation of the normal curvature of the tibial plateaus. We aimed to define bone attrition on magnetic resonance imaging (MRI) of the knee using information from both radiographs and MRIs, and to assess whether bone attrition is common prior to end stage disease osteoarthritis (OA) in the tibio-femoral joint. METHODS: All knees of participants in the community-based sample of the Framingham OA Study were evaluated for bone attrition in radiographs and MRIs. Radiographs were scored based on templates designed to outline the normal contours of the tibio-femoral joint. MRIs were analyzed using the semi-quantitative Whole-Organ Magnetic Resonance Imaging Scoring (WORMS) method. The prevalence of bone attrition was calculated using two different thresholds for MRI scores. RESULTS: Inter-observer agreement for identification of bone attrition was substantial for the radiographs (kappa=0.71, 95% CI 0.67-0.81) and moderate for MRI (kappa=0.56, 95% CI 0.40-0.72). Of 964 knees, 5.7% of the radiographs showed bone attrition. Of these, 91% of MRIs were also read as showing bone attrition. We selected a conservative threshold for bone attrition on MRI scoring (> or = 2 on a 0-3 scale) based on agreement with attrition on the radiograph or when bone attrition on MRI co-occurred with cartilage loss on OA. Using this threshold for bone attrition on MRI, bone attrition was common in knees with OA. For example, in knees with mild OA but no joint space narrowing, 13 of 88 MRIs (14.8%) showed bone attrition. CONCLUSIONS: Using MRI we found that many knees with mild OA without joint narrowing on radiographs had bone attrition, even using conservative definitions. The validity of our definition of bone attrition should be evaluated in further studies. Bone attrition may occur in milder OA and at earlier stages of disease than previously thought.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intervertebral disc (IVD) cell therapy with unconditioned 2D expanded mesenchymal stem cells (MSC) is a promising concept yet challenging to realize. Differentiation of MSCs by nonviral gene delivery of growth and differentiation factor 5 (GDF5) by electroporation mediated gene transfer could be an excellent source for cell transplantation. Human MSCs were harvested from bone marrow aspirate and GDF5 gene transfer was achieved by in vitro electroporation. Transfected cells were cultured as monolayers and as 3D cultures in 1.2% alginate bead culture. MSC expressed GDF5 efficiently for up to 21 days. The combination of GDF5 gene transfer and 3D culture in alginate showed an upregulation of aggrecan and SOX9, two markers for chondrogenesis, and KRT19 as a marker for discogenesis compared to untransfected cells. The cells encapsulated in alginate produced more proteoglycans expressed in GAG/DNA ratio. Furthermore, GDF5 transfected MCS injected into an IVD papain degeneration organ culture model showed a partial recovery of the GAG/DNA ratio after 7 days. In this study we demonstrate the potential of GDF5 transfected MSC as a promising approach for clinical translation for disc regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nail is the largest skin appendage. It grows continuously through life in a non-cyclical manner; its growth is not hormone-dependent. The nail of the middle finger of the dominant hand grows fastest with approximately 0.1 mm/day, whereas the big toe nail grows only 0.03-0.05 mm/d. The nails' size and shape vary characteristically from finger to finger and from toe to toe, for which the size and shape of the bone of the terminal phalanx is responsible. The nail apparatus consists of both epithelial and connective tissue components. The matrix epithelium is responsible for the production of the nail plate whereas the nail bed epithelium mediates firm attachment. The hyponychium is a specialized structure sealing the subungual space and allowing the nail plate to physiologically detach from the nail bed. The proximal nail fold covers most of the matrix. Its free end forms the cuticle which seals the nail pocket or cul-de-sac. The dermis of the matrix and nail bed is specialized with a morphogenetic potency. The proximal and lateral nail folds form a frame on three sides giving the nail stability and allowing it to grow out. The nail protects the distal phalanx, is an extremely versatile tool for defense and dexterity and increases the sensitivity of the tip of the finger. Nail apparatus, finger tip, tendons and ligaments of the distal interphalangeal joint form a functional unit and cannot be seen independently. The nail organ has only a certain number of reaction patterns that differ in many respects from hairy and palmoplantar skin.