20 resultados para Body Part Recognition
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Venom glands are alreadypresent in theoldes t spider group, the Mesothelae. Theglands lie in the anterior portion of the cheliceral basal segment but are very small, and it is doubtful how much the venom contributes to the predatory success. In mygalomorph spiders, the well-developed venom glands are still in the basal segment of the chelicerae and produce powerful venom that is injected via the cheliceral fangs into a victim. In all other spiders (Araneomorphae), the venom glands have become much larger and reach into the prosoma where they can take up a considerable proportion of this body part. Only a few spiders have reduced their venom glands, either partially or completely (Uloboridae, Holarchaeidae and Symphytognathidae are usually mentioned) or modified them significantly (Scytodidae, see Suter and Stratton 2013). As well as using venom, spiders may also use their chelicerae to overwhelm an item of prey. It is primarily a question of size whether a spider chews up small arthropods without applying venom or if it injects venom first. Very small and/or defenceless arthropods are picked up and crashed with the chelicerae, while larger, dangerous or well-defended items are carefully approached and only attacked with venom injection. Some spiders specialize on prey groups, such as noctuid moths (several genera of bola spiders among Araneidae), web spiders (Mimetidae), ants (Zodarion species in Zodariidae, aphantochiline thomisids, several genera among Theridiidae, Salticidae, Clubionidae and Gnaphosidae) or termites (Ammoxenidae). However, these more or less monophagous species amount only to roughly 2 % of all known spider species, while 98 % are polyphagous. From these considerations, it follows that the majority of spider venoms are not tailored to any given invertebrate or insect group but are rather unspecialized to be effective over a broad spectrum of prey types that spiders naturally encounter.
Resumo:
Background: Motor symptoms are frequent phenomena across the entire course of schizophrenia1. Some have argued that disorganized behavior was associated with aberrant motor behavior. We have studied the association of motor disturbances and disorganization in two projects focusing on the timing of movements. Method: In two studies, we assessed motor behavior and psychopathology. The first study applied a validated test of upper limb apraxia in 30 schizophrenia patients2,3. We used standardized video assessments of hand gestures by a blinded rater. The second study tested the stability of movement patterns using time series analysis in actigraphy data of 100 schizophrenia patients4. Both stability of movement patterns and the overall amount of movement were calculated from data of two hours with high degrees of social interaction comparable across the 100 subjects. Results: In total, 67% of the patients had gesture performance deficits3. Most frequently, they made spatial, temporal and body-part-as-object errors. Gesture performance relied on frontal lobe function2. Poor gesture performance was associated with increased disorganization scores. In the second study, we found disorganization to be predicted only by more irregular movement patterns irrespective of the overall amount of movement4. Conclusion : Both studies provide evidence for a link between aberrant timing of motor behavior and disorganization. Disturbed movement control seems critical for disorganized behavior in schizophrenia.
Resumo:
The differential safety and efficacy profiles of sirolimus-eluting stents when implanted in patients with multivessel coronary artery disease who have increased body mass indexes (BMIs) compared with those with normal BMIs are largely unknown. This study evaluated the impact of BMI on 1-year outcomes in patients with multivessel coronary artery disease treated with sirolimus-eluting stents as part of the Arterial Revascularization Therapies Study Part II (ARTS II). From February to November 2003, 607 patients were included at 45 centers; 176 patients had normal BMIs (<25 kg/m(2)), 289 were overweight (> or =25 and < or =30 kg/m(2)), and 142 were obese (>30 kg/m(2)). At 30 days, the cumulative incidence of the primary combined end point of death, myocardial infarction, cerebrovascular accident, and repeat revascularization (major adverse cardiac and cerebrovascular events) was 3.4% in the group with normal BMIs, 3.1% in overweight patients, and 2.8% in obese patients (p = 0.76). At 1 year, the cumulative incidence of major adverse cardiac and cerebrovascular events was 10.8%, 11.8%, and 7.0% in the normal BMI, overweight, and obese groups, respectively (p = 0.31). In conclusion, BMI had no impact on 1-year clinical outcomes in patients with multivessel coronary artery disease treated with sirolimus-eluting stents in ARTS II.
Resumo:
ABSTRACT: There is a high frequency of diarrhea and vomiting in childhood. As a consequence the focus of the present review is to recognize the different body fluid compartments, to clinically assess the degree of dehydration, to know how the equilibrium between extracellular fluid and intracellular fluid is maintained, to calculate the effective blood osmolality and discuss both parenteral fluid requirments and repair.
Resumo:
Unilateral damage to the labyrinth and the vestibular nerve cause rotational vertigo, postural imbalance, oculomotor disorders and spatial disorientation. Electrophysiological investigations in animals revealed that such deficits are partly due to imbalanced spontaneous activity and sensitivity to motion in neurons located in the ipsilesional and contralesional vestibular nuclei. Neurophysiological reorganizations taking place in the vestibular nuclei are the basis of the decline of the symptoms over time, a phenomenon known as vestibular compensation. Vestibular compensation is facilitated by motor activity and sensory experience, and current rehabilitation programs favor physical activity during the acute stage of a unilateral vestibular loss. Unfortunately, vestibular-defective patients tend to develop strategies in order to avoid movements causing imbalance and nausea (in particular body movements towards the lesioned side), which impedes vestibular compensation. Neuroanatomical evidence suggests a cortical control of postural and oculomotor reflexes based on corticofugal projections to the vestibular nuclei and, therefore, the possibility to manipulate vestibular functions through top-down mechanisms. Based on evidence from neuroimaging studies showing that imagined whole-body movements can activate part of the vestibular cortex, we propose that mental imagery of whole-body rotations to the lesioned and to the healthy side will help rebalancing the activity in the ipsilesional and contralesional vestibular nuclei. Whether imagined whole-body rotations can improve vestibular compensation could be tested in a randomized controlled study in such patients beneficiating, or not, from a mental imagery training. If validated, this hypothesis will help developing a method contributing to reduce postural instability and falls in vestibular-defective patients. Imagined whole-body rotations thus could provide a simple, safe, home-based and self-administered therapeutic method with the potential to overcome the inconvenience related to physical movements.
Resumo:
During the past 20 years or so, more has become known about the properties of khat, its pharmacology, physiological and psychological effects on humans. However, at the same time its reputation of social and recreational use in traditional contexts has hindered the dissemination of knowledge about its detrimental effects in terms of mortality. This paper focuses on this particular deficit and adds to the knowledge-base by reviewing the scant literature that does exist on mortality associated with the trade and use of khat. We sought all peer-reviewed papers relating to deaths associated with khat. From an initial list of 111, we identified 15 items meeting our selection criteria. Examination of these revealed 61 further relevant items. These were supplemented with published reports, newspaper and other media reports. A conceptual framework was then developed for classifying mortality associated with each stage of the plant's journey from its cultivation, transportation, consumption, to its effects on the human body. The model is demonstrated with concrete examples drawn from the above sources. These highlight a number of issues for which more substantive statistical data are needed, including population-based studies of the physiological and psychological determinants of khat-related fatalities. Khat-consuming communities, and health professionals charged with their care should be more aware of the physiological and psychological effects of khat, together with the risks for morbidity and mortality associated with its use. There is also a need for information to be collected at international and national levels on other causes of death associated with khat cultivation, transportation, and trade. Both these dimensions need to be understood.
Resumo:
IgA is the most abundant immunoglobulin produced in mammals, and is mostly secreted across mucous membranes. At these frontiers, which are constantly assaulted by pathogenic and commensal microbes, IgA provides part of a layered system of immune protection. In this review, we describe how IgA induction occurs through both T-dependent and T-independent mechanisms, and how IgA is generated against the prodigious load of commensal microbes after mucosal dendritic cells (DCs) have sampled a tiny fraction of the microbial consortia in the intestinal lumen. To function in this hostile environment, IgA must be induced behind the 'firewall' of the mesenteric lymph nodes to generate responses that integrate microbial stimuli, rather than the classical prime-boost effects characteristic of systemic immunity.
Resumo:
We examined the effect of normobaric hypoxia (3200 m) on maximal oxygen uptake (VO2max) and maximal power output (Pmax) during leg and upper-body exercise to identify functional and structural correlates of the variability in the decrement of VO2max (DeltaVO2max) and of maximal power output (DeltaPmax). Seven well trained male Nordic combined skiers performed incremental exercise tests to exhaustion on a cycle ergometer (leg exercise) and on a custom built doublepoling ergometer for cross-country skiing (upper-body exercise). Tests were carried out in normoxia (560 m) and normobaric hypoxia (3200 m); biopsies were taken from m. deltoideus. DeltaVO2max was not significantly different between leg (-9.1+/-4.9%) and upper-body exercise (-7.9+/-5.8%). By contrast, Pmax was significantly more reduced during leg exercise (-17.3+/-3.3%) than during upper-body exercise (-9.6+/-6.4%, p<0.05). Correlation analysis did not reveal any significant relationship between leg and upper-body exercise neither for DeltaVO2max nor for DeltaPmax. Furthermore, no relationship was observed between individual DeltaVO2max and DeltaPmax. Analysis of structural data of m. deltoideus revealed a significant correlation between capillary density and DeltaPmax (R=-0.80, p=0.03), as well as between volume density of mitochondria and DeltaPmax (R=-0.75, p=0.05). In conclusion, it seems that VO2max and Pmax are differently affected by hypoxia. The ability to tolerate hypoxia is a characteristic of the individual depending in part on the exercise mode. We present evidence that athletes with a high capillarity and a high muscular oxidative capacity are more sensitive to hypoxia.
Resumo:
This book will serve as a foundation for a variety of useful applications of graph theory to computer vision, pattern recognition, and related areas. It covers a representative set of novel graph-theoretic methods for complex computer vision and pattern recognition tasks. The first part of the book presents the application of graph theory to low-level processing of digital images such as a new method for partitioning a given image into a hierarchy of homogeneous areas using graph pyramids, or a study of the relationship between graph theory and digital topology. Part II presents graph-theoretic learning algorithms for high-level computer vision and pattern recognition applications, including a survey of graph based methodologies for pattern recognition and computer vision, a presentation of a series of computationally efficient algorithms for testing graph isomorphism and related graph matching tasks in pattern recognition and a new graph distance measure to be used for solving graph matching problems. Finally, Part III provides detailed descriptions of several applications of graph-based methods to real-world pattern recognition tasks. It includes a critical review of the main graph-based and structural methods for fingerprint classification, a new method to visualize time series of graphs, and potential applications in computer network monitoring and abnormal event detection.
Resumo:
Recognition of bacterial lipopolysaccharide (LPS) by the innate immune system involves at least three receptor molecules: CD14, TLR4 and MD-2. Additional receptor components such as heat shock proteins, chemokine receptor 4 (CXCR4), or CD55 have been suggested to be part of this activation cluster; possibly acting as additional LPS transfer molecules. Our group has previously identified CXCR4 as a component of the "LPS-sensing apparatus". In this study we aimed to elucidate the role that CXCR4 plays in innate immune responses to LPS. Here we demonstrate that CXCR4 transfection results in responsiveness to LPS. Fluorescence correlation spectroscopy experiments further showed that LPS directly interacts with CXCR4. Our data suggest that CXCR4 is not only involved in LPS binding but is also responsible for triggering signalling, especially mitogen-activated protein kinases in response to LPS. Finally, co-clustering of CXCR4 with other LPS receptors seems to be crucial for LPS signalling, thus suggesting that CXCR4 is a functional part of the multimeric LPS "sensing apparatus".
Resumo:
ATLS Guidelines recommend single plain radiography of the chest and pelvis as part of the primary survey. Such isolated radiographs, usually obtained by bedside machines, can result in limited, low-quality studies that can adversely affect management. A new digital, low-radiation imaging device, the "Lodox Statscan" (LS), provides full-body anterior and lateral views based on enhanced linear slot-scanning technology in just over 5 minutes. We have the first LS in Europe at our facility. The aim of this study was to compare LS with computed tomographic (CT) scanning, as the gold standard, to determine the sensitivity of LS investigation in detecting injuries to the chest, thoracolumbar spine, and pelvis from our own experience, and to compare our findings with those of conventional radiography in the literature.
Resumo:
Body composition changes with increasing age in men, in that lean body mass decreases whereas fat mass increases. Whether this altered body composition is related to decreasing physical activity or to the known age-associated decrease in growth hormone secretion is uncertain. To address this question, three groups of healthy men (n = 14 in each group), matched for weight, height and body mass index, were investigated using dual-energy X-ray absorptiometry, indirect calorimetry and estimate of daily growth hormone secretion [i.e. plasma insulin-like growth factor I (IGF-I-) levels]. Group 1 comprised young untrained subjects aged 31.0 +/- 2.1 years (mean +/- SEM) taking no regular physical exercise; group 2 consisted of old untrained men aged 68.6 +/- 1.2 years; and group 3 consisted of healthy old men aged 67.4 +/- 1.2 years undergoing regular physical training for more than 10 years with a training distance of at least 30 km per week. Subjects in group 3 had for the past three years taken part in the 'Grand Prix of Berne', a 16.5-km race run at a speed of 4.7 +/- 0.6 min km-1 (most recent race). Fat mass was more than 4 kg higher in old untrained men (P < 0.01, ANOVA) than in the other groups (young untrained men, 12.0 +/- 0.9 kg; old untrained men, 16.1 +/- 1.0 kg; old trained men, 11.0 +/- 0.8 kg), whereas body fat distribution (i.e. the ratio of upper to lower body fat mass) was similar between the three groups. The lean mass of old untrained men was more than 3.5 kg lower (P < 0.02, ANOVA) than in the other two groups (young untrained men, 56.4 +/- 1.0 kg; old untrained men, 52.4 +/- 1.0 kg; old trained men, 56.0 +/- 1.0 kg), mostly because of a loss of skeletal muscle mass in the arms and legs (young untrained men, 24.0 +/- 0.5 kg; old untrained men 20.8 +/- 0.5 kg; old trained men, 23.6 +/- 0.7 kg; P < 0.01, ANOVA). Resting metabolic rate per kilogram lean mass decreased with increasing age independently of physical activity (r = -0.42, P < 0.005). Fuel metabolism was determined by indirect calorimetry at rest. Protein oxidation was similar in the three groups. Old untrained men had higher (P < 0.001) carbohydrate oxidation (young untrained men, 13.2 +/- 1.0 kcal kg-1 lean mass; old untrained men, 15.2 +/- 1.3 kcal Kg-1; old trained men, 7.8 +/- 0.8 kcal kg-1), but lower (P < 0.05, ANOVA) fat oxidation (young untrained men, 10.1 +/- 1.2 kcal kg-1 lean mass; old untrained men, 6.5 +/- 1.0 kcal kg-1; old trained men, 13.7 +/- 1.0 kcal kg-1) than the other two groups. Mean plasma IGF-I level in old trained men was higher than in old untrained men (P < 0.05), but was still lower than that observed in young untrained men (P < 0.005) (young untrained men, 236 +/- 24 ng mL-1; old untrained men, 119 +/- 13 ng mL-1; old trained men, 166 +/- 14 ng mL-1). In summary, regular physical training in older men seems to prevent the changes in body composition and fuel metabolism normally associated with ageing. Whether regular physical training in formerly untrained old subjects would result in similar changes awaits further study.
Resumo:
Kidney transplant patients display decreased muscle mass and increased fat mass. Whether this altered body composition is due to glucocorticoid induced altered fuel metabolism is unclear. To answer this question, 16 kidney transplant patients were examined immediately after kidney transplantation (12 +/- 4 days, mean +/- SEM) and then during months 2, 5, 11 and 16, respectively, by whole body dual energy X-ray absorptiometry (Hologic QDR 1000W) and indirect calorimetry. Results were compared with those of 16 age, sex and body mass index matched healthy volunteers examined only once. All patients received dietary counselling with a step 1 diet of the American Heart Association and were advised to restrict their caloric intake to the resting energy expenditure plus 30%. Immediately after transplantation, lean mass of the trunk was higher by 7 +/- 1% (P < 0.05) and that of the limbs was lower by more than 10% (P < 0.01) in patients than in controls. In contrast, no difference in fat mass and resting energy expenditure could be detected between patients and controls. During the 16 months of observation, total fat mass increased in male (+4.9 +/- 1.5 kg), but not in female patients (0.1 +/- 0.8 kg). The change in fat mass observed in men was due to an increase in all subregions of the body analysed (trunk, arms+legs as well as head+neck), whereas in women only an increase in head+neck by 9 +/- 2% (P = 0.05) was detected. Body fat distribution remained unchanged in both sexes over the 16 months of observation. Lean mass of the trunk mainly decreased between days 11 and 42 (P < 0.01) and remained stable thereafter. After day 42, lean mass of arms and legs (mostly striated muscle) and head+neck progressively increased over the 14 months of observation by 1.6 +/- 0.6 kg (P < 0.05) and 0.4 +/- 0.1 kg (P < 0.01), respectively. Resting energy expenditure was similar in controls and patients at 42 days (30.0 +/- 0.7 vs. 31.0 +/- 0.9 kcal kg-1 lean mass) and did not change during the following 15 months of observation. However, composition of fuel used to sustain resting energy expenditure in the fasting state was altered in patients when compared with normal subjects, i.e. glucose oxidation was higher by more than 45% in patients (P < 0.01) during the second month after grafting, but gradually declined (P < 0.01) over the following 15 months to values similar to those observed in controls. Protein oxidation was elevated in renal transplant patients on prednisone at first measurement, a difference which tended to decline over the study period. In contrast to glucose and protein oxidation, fat oxidation was lower in patients 42 days after grafting (P < 0.01), but increased by more than 100% reaching values similar to those observed in controls after 16 months of study. Mean daily dose of prednisone per kg body weight correlated with the three components of fuel oxidation (r > 0.93, P < 0.01), i.e. protein, glucose and fat oxidation. These results indicate that in prednisone treated renal transplant patients fuel metabolism is regulated in a dose-dependent manner. Moreover, dietary measures, such as caloric and fat intake restriction as well as increase of protein intake, can prevent muscle wasting as well as part of the usually observed fat accumulation. Furthermore, the concept of preferential upper body fat accumulation as consequence of prednisone therapy in renal transplant patients has to be revised.
Resumo:
In this article we focus on the emotional basis of face perception. In addition, the most important findings concerning epidemiology and etiology of body dysmorphic disorder (BDD) will be reviewed and related to face perception. BDD can be seen as an emotional disorder in which fundamental errors in terms of information processing, especially concerning faces occur. Emotional information is misinterpreted. Both, emotional misinterpretation as well as errors in face perception and recognition are part of the disorder. The relevance of BDD respective to esthetic surgery is discussed. Alternative options for patients such as psychotherapy or pharmacotherapy for this disorder are also related to.