5 resultados para Blue-green-alga

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Varved lake sediments are excellent natural archives providing quantitative insights into climatic and environmental changes at very high resolution and chronological accuracy. However, due to the multitude of responses within lake ecosystems it is often difficult to understand how climate variability interacts with other environmental pressures such as eutrophication, and to attribute observed changes to specific causes. This is particularly challenging during the past 100 years when multiple strong trends are superposed. Here we present a high-resolution multi-proxy record of sedimentary pigments and other biogeochemical data from the varved sediments of Lake Żabińskie (Masurian Lake District, north-eastern Poland, 54°N–22°E, 120 m a.s.l.) spanning AD 1907 to 2008. Lake Żabińskie exhibits biogeochemical varves with highly organic late summer and winter layers separated by white layers of endogenous calcite precipitated in early summer. The aim of our study is to investigate whether climate-driven changes and anthropogenic changes can be separated in a multi-proxy sediment data set, and to explore which sediment proxies are potentially suitable for long quantitative climate reconstructions. We also test if convoluted analytical techniques (e.g. HPLC) can be substituted by rapid scanning techniques (visible reflectance spectroscopy VIS-RS; 380–730 nm). We used principal component analysis and cluster analysis to show that the recent eutrophication of Lake Żabińskie can be discriminated from climate-driven changes for the period AD 1907–2008. The eutrophication signal (PC1 = 46.4%; TOC, TN, TS, Phe-b, high TC/CD ratios total carotenoids/chlorophyll-a derivatives) is mainly expressed as increasing aquatic primary production, increasing hypolimnetic anoxia and a change in the algal community from green algae to blue-green algae. The proxies diagnostic for eutrophication show a smooth positive trend between 1907 and ca 1980 followed by a very rapid increase from ca. 1980 ± 2 onwards. We demonstrate that PC2 (24.4%, Chl-a-related pigments) is not affected by the eutrophication signal, but instead is sensitive to spring (MAM) temperature (r = 0.63, pcorr < 0.05, RMSEP = 0.56 °C; 5-yr filtered). Limnological monitoring data (2011–2013) support this finding. We also demonstrate that scanning visible reflectance spectroscopy (VIS-RS) data can be calibrated to HPLC-measured chloropigment data and be used to infer concentrations of sedimentary Chl-a derivatives {pheophytin a + pyropheophytin a}. This offers the possibility for very high-resolution (multi)millennial-long paleoenvironmental reconstructions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Blue-light fundus autofluorescence (FAF) imaging is currently widely used for assessing dry age-related macular degeneration (ARMD). However, at this wavelength, the fovea appears as circular zone of marked hypofluorescence, due to the absorption of macular pigment (MP). This dark spot could be misinterpreted as an atrophic area and could lead to difficulties in identifying small, central changes. The purpose of the study was to analyze differences in image quality, FAF patterns, and lesion size, when using conventional blue-light (Λ(1) = 488 nm) and green-light (Λ(2) = 514 nm) FAF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Site-selective spectroscopy in hexagonal beta-NaYF4:Er3+,Yb3+ has revealed different environments for Er3+ ions (multisite formation). The low-temperature S-4(3/2) -> (I15/2Er3+)-I-4 green emission depends on the excitation wavelength associated with the F-4(7/2) Er3+ level. We have studied the effect of hydrostatic pressure on the green, red, and blue Er3+ emission upon NIR excitation at similar to 980 nm, in order to establish the role played by energy resonance conditions and the multiple Er3+ sites due to the disordered structure for the upconversion (UC) process (energy tuning). The variation of photoluminescence spectra and lifetimes as a function of pressure and temperature reveals that the origin of the high green UC efficiency of the beta-NaYF4:Er3+,Yb3+ compound is mainly due to the multisite distribution, and the low phonon energy of the host lattice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE (99)TC combined with blue-dye mapping is considered the best sentinel lymph node (SLN) mapping technique in cervical cancer. Indocyanine green (ICG) with near infrared fluorescence imaging has been introduced as a new methodology for SLN mapping. The aim of this study was to compare these two techniques in the laparoscopic treatment of cervical cancer. METHODS Medical records of patients undergoing laparoscopic SLN mapping for cervical cancer with either (99)Tc and patent blue dye (Group 1) or ICG (Group 2) from April 2008 until August 2012 were reviewed. Sensitivity, specificity, and overall and bilateral detection rates were calculated and compared. RESULTS Fifty-eight patients were included in the study-36 patients in Group 1 and 22 patients in Group 2. Median tumor diameter was 25 and 29 mm, and mean SLN count was 2.1 and 3.7, for Groups 1 and 2, respectively. Mean non-SLN (NSLN) count was 39 for both groups. SLNs were ninefold more likely to be affected by metastatic disease compared with NSLNs (p < 0.005). Sensitivity and specificity were both 100 %. Overall detection rates were 83 and 95.5 % (p = nonsignificant), and bilateral detection rates were 61 and 95.5 % (p < 0.005), for Groups 1 and 2, respectively. In 75 % of cases, SLNs were located along the external or internal iliac nodal basins. CONCLUSIONS ICG SLN mapping in cervical cancer provides high overall and bilateral detection rates that compare favorably with the current standard of care.