11 resultados para Blog datasets

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To propose the determination of the macromolecular baseline (MMBL) in clinical 1H MR spectra based on T(1) and T(2) differentiation using 2D fitting in FiTAID, a general Fitting Tool for Arrays of Interrelated Datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep tissue imaging has become state of the art in biology, but now the problem is to quantify spatial information in a global, organ-wide context. Although access to the raw data is no longer a limitation, the computational tools to extract biologically useful information out of these large data sets is still catching up. In many cases, to understand the mechanism behind a biological process, where molecules or cells interact with each other, it is mandatory to know their mutual positions. We illustrate this principle here with the immune system. Although the general functions of lymph nodes as immune sentinels are well described, many cellular and molecular details governing the interactions of lymphocytes and dendritic cells remain unclear to date and prevent an in-depth mechanistic understanding of the immune system. We imaged ex vivo lymph nodes isolated from both wild-type and transgenic mice lacking key factors for dendritic cell positioning and used software written in MATLAB to determine the spatial distances between the dendritic cells and the internal high endothelial vascular network. This allowed us to quantify the spatial localization of the dendritic cells in the lymph node, which is a critical parameter determining the effectiveness of an adaptive immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial independent component analysis (sICA) of functional magnetic resonance imaging (fMRI) time series can generate meaningful activation maps and associated descriptive signals, which are useful to evaluate datasets of the entire brain or selected portions of it. Besides computational implications, variations in the input dataset combined with the multivariate nature of ICA may lead to different spatial or temporal readouts of brain activation phenomena. By reducing and increasing a volume of interest (VOI), we applied sICA to different datasets from real activation experiments with multislice acquisition and single or multiple sensory-motor task-induced blood oxygenation level-dependent (BOLD) signal sources with different spatial and temporal structure. Using receiver operating characteristics (ROC) methodology for accuracy evaluation and multiple regression analysis as benchmark, we compared sICA decompositions of reduced and increased VOI fMRI time-series containing auditory, motor and hemifield visual activation occurring separately or simultaneously in time. Both approaches yielded valid results; however, the results of the increased VOI approach were spatially more accurate compared to the results of the decreased VOI approach. This is consistent with the capability of sICA to take advantage of extended samples of statistical observations and suggests that sICA is more powerful with extended rather than reduced VOI datasets to delineate brain activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcriptomics could contribute significantly to the early and specific diagnosis of rejection episodes by defining 'molecular Banff' signatures. Recently, the description of pathogenesis-based transcript sets offered a new opportunity for objective and quantitative diagnosis. Generating high-quality transcript panels is thus critical to define high-performance diagnostic classifier. In this study, a comparative analysis was performed across four different microarray datasets of heterogeneous sample collections from two published clinical datasets and two own datasets including biopsies for clinical indication, and samples from nonhuman primates. We characterized a common transcriptional profile of 70 genes, defined as acute rejection transcript set (ARTS). ARTS expression is significantly up-regulated in all AR samples as compared with stable allografts or healthy kidneys, and strongly correlates with the severity of Banff AR types. Similarly, ARTS were tested as a classifier in a large collection of 143 independent biopsies recently published by the University of Alberta. Results demonstrate that the 'in silico' approach applied in this study is able to identify a robust and reliable molecular signature for AR, supporting a specific and sensitive molecular diagnostic approach for renal transplant monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the RNetCDF package (version 1.6), an interface for reading and writing files in Unidata NetCDF format, and gives an introduction to the NetCDF file format. NetCDF is a machine independent binary file format which allows storage of different types of array based data, along with short metadata descriptions. The package presented here allows access to the most important functions of the NetCDF C-interface for reading, writing, and modifying NetCDF datasets. In this paper, we present a short overview on the NetCDF file format and show usage examples of the package.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land degradation as well as land conservation maps at a (sub-) national scale are critical for pro-ject planning for sustainable land management. It has long been recognized that online accessible and low-cost raster data sets (e.g. Landsat imagery, SRTM-DEM’s) provide a readily available basis for land resource assessments for developing countries. However, choice of spatial, tempo-ral and spectral resolution of such data is often limited. Furthermore, while local expert knowl-edge on land degradation processes is abundant, difficulties are often encountered when linking existing knowledge with modern approaches including GIS and RS. The aim of this study was to develop an easily applicable, standardized workflow for preliminary spatial assessments of land degradation and conservation, which also allows the integration of existing expert knowledge. The core of the developed method consists of a workflow for rule-based land resource assess-ment. In a systematic way, this workflow leads from predefined land degradation and conserva-tion classes to field indicators, to suitable spatial proxy data, and finally to a set of rules for clas-sification of spatial datasets. Pre-conditions are used to narrow the area of interest. Decision tree models are used for integrating the different rules. It can be concluded that the workflow presented assists experts from different disciplines in col-laboration GIS/RS specialists in establishing a preliminary model for assessing land degradation and conservation in a spatially explicit manner. The workflow provides support when linking field indicators and spatial datasets, and when determining field indicators for groundtruthing.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines how the geospatial accuracy of samples and sample size influence conclusions from geospatial analyses. It does so using the example of a study investigating the global phenomenon of large-scale land acquisitions and the socio-ecological characteristics of the areas they target. First, we analysed land deal datasets of varying geospatial accuracy and varying sizes and compared the results in terms of land cover, population density, and two indicators for agricultural potential: yield gap and availability of uncultivated land that is suitable for rainfed agriculture. We found that an increase in geospatial accuracy led to a substantial and greater change in conclusions about the land cover types targeted than an increase in sample size, suggesting that using a sample of higher geospatial accuracy does more to improve results than using a larger sample. The same finding emerged for population density, yield gap, and the availability of uncultivated land suitable for rainfed agriculture. Furthermore, the statistical median proved to be more consistent than the mean when comparing the descriptive statistics for datasets of different geospatial accuracy. Second, we analysed effects of geospatial accuracy on estimations regarding the potential for advancing agricultural development in target contexts. Our results show that the target contexts of the majority of land deals in our sample whose geolocation is known with a high level of accuracy contain smaller amounts of suitable, but uncultivated land than regional- and national-scale averages suggest. Consequently, the more target contexts vary within a country, the more detailed the spatial scale of analysis has to be in order to draw meaningful conclusions about the phenomena under investigation. We therefore advise against using national-scale statistics to approximate or characterize phenomena that have a local-scale impact, particularly if key indicators vary widely within a country.