23 resultados para Blessington, Marguerite, Countess of, 1789-1849.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The so-called Dutch Pranketing Room of Alethea Talbot, Countess of Arundel, at Tart Hall was a site of domestic experiments, courtly splendour and global ambition. Lady Arundel, the probable author of a famous recipe book, would have used Tart Hall for cooking and experiments as well as for impressive dinner parties, and she would have used large amounts of sugar to create intricate imitations of meat and vegetables to astonish, entertain and delight her guests. Linking household practice with global trade as well as artistic creation, Lady Arundel’s banquets are situated not only between a national tradition of cooking, as it appears in Markham’s manuals, and the new possibilities the arising global trade provided, but also played with a mismatch between taste and sight. This mediating role could be compared to that played by the artists the Countess employed. Within this context it is worth noting that a series of paintings displayed in the building’s gallery showed still lifes, markets, and a cook. The inventory of Tart Hall gives an insight into the world of the widely travelled collector and patron of Van Dyck and Rubens, but raises also a number of questions. In my talk I would like to explore the Countess’ Pranketing Room as a site of mediation between alimentary and painterly experiments, considering the use of recipes, experience, invention and transformation
Resumo:
Activators of 5'-AMP-activated protein kinase (AMPK) 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), metformin, and exercise activate atypical protein kinase C (aPKC) and ERK and stimulate glucose transport in muscle by uncertain mechanisms. Here, in cultured L6 myotubes: AICAR- and metformin-induced activation of AMPK was required for activation of aPKC and ERK; aPKC activation involved and required phosphoinositide-dependent kinase 1 (PDK1) phosphorylation of Thr410-PKC-zeta; aPKC Thr410 phosphorylation and activation also required MEK1-dependent ERK; and glucose transport effects of AICAR and metformin were inhibited by expression of dominant-negative AMPK, kinase-inactive PDK1, MEK1 inhibitors, kinase-inactive PKC-zeta, and RNA interference (RNAi)-mediated knockdown of PKC-zeta. In mice, muscle-specific aPKC (PKC-lambda) depletion by conditional gene targeting impaired AICAR-stimulated glucose disposal and stimulatory effects of both AICAR and metformin on 2-deoxyglucose/glucose uptake in muscle in vivo and AICAR stimulation of 2-[(3)H]deoxyglucose uptake in isolated extensor digitorum longus muscle; however, AMPK activation was unimpaired. In marked contrast to AICAR and metformin, treadmill exercise-induced stimulation of 2-deoxyglucose/glucose uptake was not inhibited in aPKC-knockout mice. Finally, in intact rodents, AICAR and metformin activated aPKC in muscle, but not in liver, despite activating AMPK in both tissues. The findings demonstrate that in muscle AICAR and metformin activate aPKC via sequential activation of AMPK, ERK, and PDK1 and the AMPK/ERK/PDK1/aPKC pathway is required for metformin- and AICAR-stimulated increases in glucose transport. On the other hand, although aPKC is activated by treadmill exercise, this activation is not required for exercise-induced increases in glucose transport, and therefore may be a redundant mechanism.
Resumo:
Purpose Total knee arthroplasty (TKA) is currently the international standard of care for treating degenerative and rheumatologic knee joint disease, as well as certain knee joint fractures. We sought to answer the following three research questions: (1) What is the international variance in primary and revision TKA rates around the world? (2) How do patient demographics (e.g., age, gender) vary internationally? (3) How have the rates of TKA utilization changed over time? Methods The survey included 18 countries with a total population of 755 million, and an estimated 1,324,000 annual primary and revision total knee procedures. Ten national inpatient databases were queried for this study from Canada, the United States, Finland, France, Germany, Italy, the Netherlands, Portugal, Spain, and Switzerland. Inpatient data were also compared with published registry data for eight countries with operating arthroplasty registers (Denmark, England & Wales, Norway, Romania, Scotland, Sweden, Australia, and New Zealand). Results The average and median rate of primary and revision (combined) total knee replacement was 175 and 149 procedures/100,000 population, respectively, and ranged between 8.8 and 234 procedures/100,000 population. We observed that the procedure rate significantly increased over time for the countries in which historical data were available. The compound annual growth in the incidence of TKA ranged by country from 5.3% (France) to 17% (Portugal). We observed a nearly 27-fold range of TKA utilization rates between the 18 different countries included in the survey. Conclusion It is apparent from the results of this study that the demand for TKA has risen substantially over the past decade in countries around the world.
Resumo:
To determine the response rate to oral capsular fenretinide in children with recurrent or biopsy proven refractory high-risk neuroblastoma.
Resumo:
Adult-onset growth hormone (GH) deficiency (GHD) is associated with insulin resistance and decreased exercise capacity. Intramyocellular lipids (IMCL) depend on training status, diet, and insulin sensitivity. Using magnetic resonance spectroscopy, we studied IMCL content following physical activity (IMCL-depleted) and high-fat diet (IMCL-repleted) in 15 patients with GHD before and after 4 mo of GH replacement therapy (GHRT) and in 11 healthy control subjects. Measurements of insulin resistance and exercise capacity were performed and skeletal muscle biopsies were carried out to assess expression of mRNA of key enzymes involved in skeletal muscle lipid metabolism by real-time PCR and ultrastructure by electron microscopy. Compared with control subjects, patients with GHD showed significantly higher difference between IMCL-depleted and IMCL-repleted. GHRT resulted in an increase in skeletal muscle mRNA expression of IGF-I, hormone-sensitive lipase, and a tendency for an increase in fatty acid binding protein-3. Electron microscopy examination did not reveal significant differences after GHRT. In conclusion, variation of IMCL may be increased in patients with GHD compared with healthy control subjects. Qualitative changes within the skeletal muscle (i.e., an increase in free fatty acids availability from systemic and/or local sources) may contribute to the increase in insulin resistance and possibly to the improvement of exercise capacity after GHRT. The upregulation of IGF-I mRNA suggests a paracrine/autocrine role of IGF-I on skeletal muscle.
Resumo:
Matriptase-2 (Tmprss6), a type II transmembrane serine protease, has an essential role in iron homoeostasis as a hepcidin regulator. Recently, patients with TMPRSS6 mutations and suffering from iron-refractory iron deficiency anaemia (IRIDA) have been reported. We describe two new cases of IRIDA, one patient of Swiss origin and the second of Italian origin. The first case results from a large deletion of 1054 nucleotides corresponding to an in frame deletion of 30 amino acid residues in the low-density lipoprotein receptor-1/-2 (LDLR-1/-2) domains and from a missense mutation in CUB1 (S304L). In the second case, a homozygous G-->C mutation in the last nucleotide of exon 15 and which modified the consensus sequence of the 5' splice donor site of intron 15 (AGgt-->ACgt) was identified. Both patients had a high hepcidin level and low serum iron and transferrin saturation compared to age-matched controls. Continuous perfusion of i.v. iron 4 h/d x 5 d in the first case resulted in a significant rise in haemoglobin. These new cases of IRIDA illustrate the importance of LDLR-1/-2 and CUB1 domains in matriptase-2 function as well as the role of matriptase-2 in hepcidin regulation. Furthermore a deletional form of TMPRSS6 (in LDLR-1/-2 domains) resulting in IRIDA is described for the first time. These cases reinforce the belief that patients suffering from IRIDA have no specific geographical or ethnic distribution and are sporadic secondary to different mutations of the matriptase-2 gene.
Resumo:
In the kidney, progesterone is inactivated to 20alpha-dihydro-progesterone (20alpha-DH-progesterone) to protect the mineralocorticoid receptor from progesterone excess. In an attempt to clone the enzyme with 20alpha-hydroxysteroid activity using expression cloning in CHOP cells and a human kidney expression library, serendipitously cDNA encoding CYP27A1 was isolated. Overexpression of CYP27A1 in CHOP cells decreased progesterone conversion to 20alpha-DH-progesterone in a dose-dependent manner, an effect enhanced by cotransfection with adrenodoxin and adrenodoxin reductase. Incubation of CHOP cells with 27-hydroxycholesterol, a product of CYP27A1, increased the ratio of progesterone/20alpha-DH-progesterone in a concentration-dependent manner, indicating that the effect of CYP27A1 overexpression was mediated by 27-hydroxycholesterol. In order to analyze whether these observations are relevant in vivo, progesterone and 20alpha-DH-progesterone were measured by GC-MS in 24-h urine of CYP27A1 gene knock out (ko) mice and their control wild type (wt) and heterozygote (hz) littermates. In CYP27A1 ko mice, urinary progesterone concentrations were decreased, 20alpha-DH-progesterone increased and the progesterone/20alpha-DH-progesterone ratio decreased threefold (p<0.001). Thus, CYP27A1 modulates progesterone concentrations. The underlying mechanism is inhibition of 20alpha-hydroxysteroid dehydrogenase by 27-hydroxycholesterol. Key words: Progesterone, sterol 27-hydroxylase, 27-hydroxycholesterol, 20a-steroid dehydrogenase, 20a-DH-progesterone.
Resumo:
Abnormal lipid metabolism may be related to the increased cardiovascular risk in type 1 diabetes. Secretion and clearance rates of very low density lipoprotein (VLDL) apolipoprotein B100 (apoB) determine plasma lipid concentrations. Type 1 diabetes is characterized by increased growth hormone (GH) secretion and decreased insulin-like growth factor (IGF) I concentrations. High-dose IGF-I therapy improves the lipid profile in type 1 diabetes. This study examined the effect of low-dose (40 microg.kg(-1).day(-1)) IGF-I therapy on VLDL apoB metabolism, VLDL composition, and the GH-IGF-I axis during euglycemia in type 1 diabetes. Using a stable isotope technique, VLDL apoB kinetics were estimated before and after 1 wk of IGF-I therapy in 12 patients with type 1 diabetes in a double-blind, placebo-controlled trial. Fasting plasma triglyceride (P < 0.03), VLDL-triglyceride concentrations (P < 0.05), and the VLDL-triglyceride-to-VLDL apoB ratio (P < 0.002) significantly decreased after IGF-I therapy, whereas VLDL apoB kinetics were not significantly affected by IGF-I therapy. IGF-I therapy resulted in a significant increase in IGF-I and a significant reduction in GH concentrations. The mean overnight insulin concentrations during euglycemia decreased by 25% after IGF-I therapy. These results indicate that low-dose IGF-I therapy restores the GH-IGF-I axis in type 1 diabetes. IGF-I therapy changes fasting triglyceride concentrations and VLDL composition probably because of an increase in insulin sensitivity.
Resumo:
OBJECTIVES The protozoan parasite Giardia lamblia causes giardiasis, a persistent diarrhoea. Nitro drugs such as the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are used for the treatment of giardiasis. Nitroreductases may play a role in activating these drugs. G. lamblia contains two nitroreductases, GlNR1 and GlNR2. The aim of this work was to elucidate the role of GlNR2. METHODS Expression of GlNR2 was analysed by reverse transcription PCR. Recombinant GlNR2 was overexpressed in G. lamblia and drug susceptibility was analysed. Recombinant GlNR2 was subjected to functional assays. Escherichia coli expressing full-length or truncated GlNR1 and GlNR2 were grown in the presence of nitro compounds. Using E. coli reporter strains for nitric oxide and DNA damage responses, we analysed whether GlNR1 and GlNR2 elicited the respective responses in the presence, or absence, of the drugs. RESULTS G. lamblia trophozoites overexpressing GlNR2 were less susceptible to both nitro drugs as compared with control trophozoites. GlNR2 was a functional nitroreductase when expressed in E. coli. E. coli expressing GlNR1 was more susceptible to metronidazole under aerobic and semi-aerobic and to nitazoxanide under semi-aerobic growth conditions. E. coli expressing GlNR2 was not susceptible to either drug. In reporter strains, GlNR1, but not GlNR2, elicited nitric oxide and DNA repair responses, even in the absence of nitro drugs. CONCLUSIONS These findings suggest that GlNR2 is an active nitroreductase with a mode of action different from that of GlNR1. Thus, susceptibility to nitro drugs may depend not only on activation, but also on inactivation of the drugs by specific nitroreductases.
Resumo:
Decadal-to-century scale trends for a range of marine environmental variables in the upper mesopelagic layer (UML, 100–600 m) are investigated using results from seven Earth System Models forced by a high greenhouse gas emission scenario. The models as a class represent the observation-based distribution of oxygen (O2) and carbon dioxide (CO2), albeit major mismatches between observation-based and simulated values remain for individual models. By year 2100 all models project an increase in SST between 2 °C and 3 °C, and a decrease in the pH and in the saturation state of water with respect to calcium carbonate minerals in the UML. A decrease in the total ocean inventory of dissolved oxygen by 2% to 4% is projected by the range of models. Projected O2 changes in the UML show a complex pattern with both increasing and decreasing trends reflecting the subtle balance of different competing factors such as circulation, production, remineralization, and temperature changes. Projected changes in the total volume of hypoxic and suboxic waters remain relatively small in all models. A widespread increase of CO2 in the UML is projected. The median of the CO2 distribution between 100 and 600m shifts from 0.1–0.2 mol m−3 in year 1990 to 0.2–0.4 mol m−3 in year 2100, primarily as a result of the invasion of anthropogenic carbon from the atmosphere. The co-occurrence of changes in a range of environmental variables indicates the need to further investigate their synergistic impacts on marine ecosystems and Earth System feedbacks.