10 resultados para Bispathodus aculeatus aculeatus
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Spatial heterogeneity in diversity and intensity of parasitism is a typical feature of most host-parasite interactions, but understanding of the evolutionary implications of such variation is limited. One possible outcome of infection heterogeneities is parasite-mediated divergent selection between host populations, ecotypes or species which may facilitate the process of ecological speciation. However, very few studies have described infections in population-pairs along the speciation continuum from low to moderate or high degree of genetic differentiation that would address the possibility of parasite-mediated divergent selection in the early stages of the speciation process. Here we provide an example of divergent parasitism in freshwater fish ecotypes by examining macroparasite infections in threespine stickleback (Gasterosteus aculeatus) of four Swiss lake systems each harbouring parapatric lake-stream ecotype pairs. We demonstrate significant differences in infections within and between the pairs that are driven particularly by the parasite taxa transmitted to fish from benthic invertebrates. The magnitude of the differences tended to correlate positively with the extent of neutral genetic differentiation between the parapatric lake and stream populations of stickleback, whereas no such correlation was found among allopatric populations from similar or contrasting habitats. This suggests that genetic differentiation is unrelated to the magnitude of parasite infection contrasts when gene flow is constrained by geographical barriers while in the absence of physical barriers, genetic differentiation and the magnitude of differences in infections tend to be positively correlated.
Resumo:
Neutral and adaptive variation among populations within a species is a major component of biological diversity and may be pronounced among insular populations due to geographical isolation and island specific evolutionary forces at work. Detecting and preserving potential evolutionary significant units below the species rank has become a crucial task for conservation biology. Combining genetic, phenotypic and ecological data, we investigated evolutionary patterns among the enigmatic threespine stickleback populations from western Mediterranean islands, all of which are threatened by habitat deterioration and climate change. We find indications that these populations derive from different genetic lineages, being genetically highly distinct from the stickleback of mainland Europe and the northern Atlantic as well as from each other. Mediterranean island stickleback populations are also phenotypically distinct from mainland populations but interestingly stickleback from Iceland have converged on a similar phenotype. This distinctive island stickleback phenotype seems to be driven by distinct selective regimes on islands versus continents. Overall, our results reveal the status of western Mediterranean island stickleback as evolutionarily distinct units, important for conservation of biodiversity.
Resumo:
BACKGROUND: The fertilization success in sperm competition in externally fertilizing fish depends on number and quality of sperm. The time delay between sequential ejaculations may further influence the outcome of sperm competition. Such a time interval can load the raffle over fertilization if fertilization takes place very fast. Short fertilization times are generally assumed for externally fertilizing fish such as the three-spined stickleback (Gasterosteus aculeatus). In this pair-spawning fish, territorial males often try to steal fertilizations in nests of neighbouring males. This sneaking behaviour causes sperm competition. Sneakers will only get a share of paternity when eggs are not fertilized immediately after sperm release. Contrary to males, females may be interested in multiple paternity of their clutch of eggs. There thus may be a sexual conflict over the speed of fertilization. RESULTS: In this study we used two different in vitro fertilization experiments to assess how fast eggs are fertilized in sticklebacks. We show that complete fertilization takes more than 5 min which is atypically long for externally fertilizing fishes. CONCLUSION: This result suggests that the time difference does not imply high costs to the second stickleback male to ejaculate. Slow fertilization (and concomitant prolonged longevity of sperm) may be the result of sexual conflict in which females aimed at complete fertilization and/or multiple paternity.
Resumo:
Background: A small pond, c. 90 years old, near Bern, Switzerland contains a population of threespine stickleback (Gasterosteus aculeatus) with two distinct male phenotypes. Males of one type are large, and red, and nest in the shallow littoral zone. The males of the other are small and orange, and nest offshore at slightly greater depth. The females in this population are phenotypically highly variable but cannot easily be assigned to either male type. Question: Is the existence of two sympatric male morphs maintained by substrate-associated male nest site choice and facilitated by female mate preferences? Organisms: Male stickleback caught individually at their breeding sites. Females caught with minnow traps. Methods: In experimental tanks, we simulated the slope and substrate of the two nesting habitats. We then placed individual males in a tank and observed in which habitat the male would build his nest. In a simultaneous two-stimulus choice design, we gave females the choice between a large, red male and a small, orange one. We measured female morphology and used linear mixed effect models to determine whether female preference correlated with female morphology. Results: Both red and orange males preferred nesting in the habitat that simulated the slightly deeper offshore condition. This is the habitat occupied by the small, orange males in the pond itself. The proportion of females that chose a small orange male was similar to that which chose a large red male. Several aspects of female phenotype correlated with the male type that a female preferred.
Resumo:
Divergent natural selection regimes can contribute to adaptive population divergence, but can be sensitive to human-mediated environmental change. Nutrient loading of aquatic ecosystems, for example, might modify selection pressures by altering the abundance and distribution of resources and the prevalence and infectivity of parasites. Here, we used a mesocosm experiment to test for interactive effects of nutrient loading and parasitism on host condition and feeding ecology. Specifically, we investigated whether the common fish parasite Gyrodactylus sp. differentially affected recently diverged lake and stream ecotypes of three-spined stickleback (Gasterosteus aculeatus). We found that the stream ecotype had a higher resistance to Gyrodactylus sp. infections than the lake ecotype, and that both ecotypes experienced a cost of parasitism, indicated by negative relationships between parasite load and both stomach fullness and body condition. Overall, our results suggest that in the early stages of adaptive population divergence of hosts, parasites can affect host resistance, body condition, and diet.