2 resultados para Bismuth based powders

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the past few years indications for the use of the air polishing technology have been expanded from supragingival use (airflow) to subgingival air polishing (perioflow) by the development of new low-abrasive glycine-based powders and devices with a subgingival nozzle. Several studies on the subgingival use of air polishing have been completed. On 7 June 2012, during the Europerio 7 Congress in Vienna, a consensus conference on mechanical biofilm management took place aiming to review the current evidence from the literature on the clinical relevance of the subgingival use of air polishing and to make practical recommendations for the clinician. Bernita Bush (Bern), Prof Johannes Einwag (Stuttgart), Prof Thomas Flemmig (Seattle), Carmen Lanoway (Munich), Prof Ursula Platzer (Hamburg), Prof Petra Schmage (Hamburg), Brigitte Schoeneich (Zurich), Prof Anton Sculean (Bern), Dr Clemens Walter (Basel), and Prof Jan Wennström (Gothenburg) discussed under the moderation of Klaus-Dieter Bastendorf and Christian Becker (both ADIC Association for Dental Infection Control) the available clinical studies to reach a consensus on available clinical evidence. This paper summarizes the main conclusions of the consensus conference and points to the clinical relevance of the findings for the dental practitioner.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the synthesis and characterization of colored ZnO-based powders via solution combustion reaction of urea and zinc nitrate hexahydrate in varying molar ratios between 1:1 and 10:1. Among other techniques, we employ X-ray diffraction, nuclear magnetic resonance, and Raman spectroscopy to characterize the products. Within a narrow range of reactant ratios, we reproducibly find an unidentified, crystalline precursor phase related to isocyanuric acid next to ZnO. Finally, we complement our investigations by performing Prompt Gamma Activation Analysis (PGAA) on selected products in order to directly determine elemental bulk compositions and compare these with X-ray photoelectron spectroscopy (XPS) measurements. Our data show traces of nitrogen mainly on the surface of the particles, and thus we question the solution combustion method as a reliable synthesis toward N-doped ZnO. Furthermore, we exclude nitrogen as being responsible for the appearance of the four controversially discussed Raman bands superimposed onto the spectrum of pure ZnO (at 275, 510, 582, and 643 cm–1) and show that the combination of PGAA and XPS is an excellent and complementary method to obtain information about the distribution of the elements in question.