14 resultados para Birch.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with birch pollen allergy (major allergen: Bet v 1) have often an associated oral allergy syndrome (OAS) to apple, which contains the cross-reactive allergen Mal d 1. As successful birch pollen immunotherapy does not consistently improve apple related OAS symptoms, we evaluated whether regular apple consumption has an effect on OAS and immune parameters of Mal d 1 or Bet v 1 allergy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lake sediments from arcto-boreal regions commonly contain abundant Betula pollen. However, palaeoenvironmental interpretations of Betula pollen are often ambiguous because of the lack of reliable morphological features to distinguish among ecologically distinct Betula species in western North America. We measured the grain diameters and pore depths of pollen from three tree-birch species (B. papyrifera, B. kenaica and B. neoalaskana) and two shrub-birch species (B. glandulosa and B. nana), and calculated the ratio of grain diameter to pore depth (D/P ratio). No statistical difference exists in all three parameters between the shrub-birch species or between two of the tree-birch species (B. kenaica and B. papyrifera), and B. neoalaskana is intermediate between the shrub-birch and the other two tree-birch species. However, mean pore depth is significantly larger for the tree species than for the shrub species. In contrast, mean grain diameter cannot distinguish tree and shrub species. Mean D/P ratio separates tree and shrub species less clearly than pore depth, but this ratio can be used for verification. The threshold for distinguishing pollen of tree versus shrub birch lies at 2.55 μm and 8.30 for pore depth and D/P ratio, respectively. We'applied these thresholds to the analysis of Betula pollen in an Alaskan lake-sediment core spanning the past 800 years. Results show that shrub birch increased markedly at the expense of tree birch during the‘Little Ice Age’; this patten is not discernible in the profile of total birch pollen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lake sediment records from the Weerterbos region, in the southern Netherlands, were studied to reconstruct summer temperature and environmental changes during the Weichselian Lateglacial Interstadial. A sediment core obtained from a small lacustrine basin was analysed for multiple proxies, including lithological changes, oxygen isotopes of bulk carbonates, pollen and chironomids. It was found that the oxygen isotope record differed strongly from the other proxies. Based on a comparison with three additional lake sediment records from the same region, it emerged that the oxygen isotope records were strongly affected by local environmental conditions, impeding the distinction of a regional palaeoclimate signal. The chironomid-inferred July air temperature reconstruction produced inferred interstadial temperatures ranging between ∼15° and 18°C, largely consistent with previously published results from the northern part of the Netherlands. A temporary regressive phase in the pollen record, which can be tentatively correlated with the Older Dryas, preceded the expansion of birch woodland. Despite differences between the four pollen records from the Weerterbos region, a comparable regressive vegetation phase that was possibly the result of a shift to drier conditions could be discerned in all of the profiles. In addition, a temporary temperature decline of ∼1.5°C was inferred from the chironomid record during this regressive phase. The multi-proxy approach used here enabled a direct comparison of inferred changes in temperature, vegetation and environmental conditions at an individual site, while the multi-site approach provided insight into the factors influencing the pollen and isotope records from these small-scale depressions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Connus sous le nom populaire de palafittes, les habitats préhistoriques construits sur les rives des lacs subalpins du Néolithique à l’aube de l’âge du Fer (entre 5300 et 700 av. J.-C.) offrent des informations exceptionnelles sur l’évolution culturelle d’une importante région européenne, grâce à la préservation remarquable des matériaux organiques, en particulier du bois. À partir de la deuxième moitié du XXe siècle, le perfectionnement des techniques de fouille subaquatiques et de la dendrochronologie permettront la construction d’un schéma chronologique précis pour l’Europe nord-alpine. Les recherches contribueront à des observations d’ordre écologique à l’échelle locale et régionale et à l’identification des rythmes de développement des villages. Sous l’égide de l'UNESCO, les années 2010 verront la constitution d’un inventaire vaste et uniforme des sites préhistoriques des lacs circumalpins, classés Patrimoine culturel mondial en juin 2011. De nombreux objets préhistoriques, romains et médiévaux ont été découverts entre 2003 et 2010, au Schnidejoch, un col des Alpes bernoises occidentales à 2756 m d’altitude, à la frontière entre les cantons de Berne et du Valais. Les hautes températures de l'été 2003 ont provoqué la fonte d'un petit champ de glace et mis en lumière les vestiges. Les recherches ont été programmées à la suite d’une série d’informations fournies par des randonneurs. Les objets en matière organique (bois, écorce de bouleau, cuir, fibres végétales) revêtent une très grande importance car ils ont permis l’obtention de plus d’une cinquantaine de datations radiocarbone ; elles indiquent le passage du col entre la moitié du Ve millénaire av. J.-C. et l’année 1000 de notre ère. En outre, les séries de datations suggèrent l’alternance de périodes de praticabilité et d’inaccessibilité du col. Le Schnidejoch est actuellement le plus ancien témoignage de la traversée des Alpes, reliant l‘Oberland bernois par les vallées de la Simme et du Rhône.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution pollen analyses made on the same samples on which the ratios of oxygen isotopes were measured that provided the time scale and a temperature proxy after correlation to NorthGRIP. (1) A primary succession: The vegetation responded to the rapid rise of temperatures around 14,685 yr BP, with a primary succession on a decadal to centennial time scale. The succession between ca 15,600 and 13,000 yr BP included: (1.1.) The replacement of shrub-tundra by woodland of Juniperus and tree birch (around 14,665 yr BP) (1.2.) The response of Juniperus pollen to the shift in oxygen isotopes in less than 20 yr, (1.3.) A sequence of population increases of Hippophaë rhamnoides (ca 14,600 yr BP), Salix spp. (ca 14,600 yr BP), Betula trees (ca.14,480 yr BP), Populus cf. tremula (ca. 14,300 yr BP), and Pinus cf. sylvestris (ca. 13,830 yr BP). (2) Biological processes: Plants responded to the rapid increase of summer temperatures on all organisational levels: (2.1) Individuals may have produced more pollen (e.g. Juniperus); (2.2) Populations increased or decreased (e.g. Juniperus, Betula, later Pinus), and (2.3) Populations changed their biogeographical range and may show migrational lags. (2.4) Plant communities changed in their composition because the species pools changed through immigration and (local) extinction. Some plant communities may have been without modern analogue.These mechanisms require increasing amounts of time. (2.5) Processes on the level of ecosystems, with species interactions, may involve various time scales. Besides competition and facilitation, nitrogen fixation is discussed. (3) The minor fluctuations of temperature during the Late-Glacial Interstadial, which are recorded in δ18O, resulted in only very minor changes in pollen during the Aegelsee Oscillation (Older Dryas biozone, GI-1d) and the Gerzensee Oscillation (GI-1b). (4) Biodiversity: The afforestation at the onset of Bølling coincided with a gradual increase of taxonomic diversity up to the time of the major Pinus expansion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Archaeological finds from Schnidejoch (2756 m a.s.l.) and Lötschenpass (2690 m a.s.l.) cover the periods from the Early Neolithic to the Middle Ages (4800 BC - 1000 AD). The numerous finds from Schnidejoch discovered since 2003 can now be seen in relationship with Neolithic and Bronze Age settlements in the Rhone valley and together with the early use of alpine meadows and early transhumance. Finds of Early Bronze Age bows from Lötschenpass go back to the 1930ies. New finds of wooden objects and objects made from birch bark melted out from the ice in the summer of 2011. The lecture presents these new finds and an actualized view of Schnidejoch finds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen isotope records show a major climatic reversal at 8.2 ka in Greenland and Europe. Annually laminated sediments from two lakes in Switzerland and Germany were sampled contiguously to assess the response of European vegetation to climate change ca. 8.2 ka with time resolution and precision comparable to those of the Greenland ice cores. The pollen assemblages show pronounced and immediate responses (0–20 yr) of terrestrial vegetation to the climatic change at 8.2 ka. A sudden collapse of Corylus avellana (hazel) was accompanied by the rapid expansion of Pinus (pine), Betula (birch), and Tilia (linden), and by the invasion of Fagus silvatica (beech) and Abies alba (fir). Vegetational changes suggest that climatic cooling reduced drought stress, allowing more drought-sensitive and taller growing species to out-compete Corylus avellana by forming denser forest canopies. Climate cooling at 8.2 ka and the immediate reorganization of terrestrial ecosystems has gone unrecognized by previous pollen studies. On the basis of our data we conclude that the early Holocene high abundance of C. avellana in Europe was climatically caused, and we question the conventional opinion that postglacial expansions of F. silvatica and A. alba were controlled by low migration rates rather than by climate. The close connection between climatic change and vegetational response at a subcontinental scale implies that forecasted global warming may trigger rapid collapses, expansions, and invasions of tree species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silver birch (Betula pendula Roth) and downy birch (Betula pubescens Ehrh.) are short-lived, relatively small broadleaved trees that occur throughout most of Europe, particularly in northern regions. In southern Europe, birch trees are confined to mountainous areas, as they do not tolerate prolonged summer drought. Birch has a light canopy of small serrated leaves, and characteristic smooth, white to grey bark. In northern regions, birch trees can dominate the landscape up to the tree-line, whereas in the centre of their range they often occur early in secondary succession because of their abundant seed production, low demands on soil quality, and intolerance of shade. Birch trees provide the predominant hard wood source in northern Europe, and some varieties of Betula pendula produce highly priced veneers, while Betula pubescens is mostly used for pulp and fire wood. Other rarer species of birch are endemic to Europe contributing to the continental biodiversity even at high elevations and latitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of Soppensee (Central Switzerland, 596 m a.s.l.) has been reconstructed using algal remains such as diatoms, chlorophytes and fossil pigments, as well as the pollen and spores of macrophytes. Sediment accumulation in Soppensee began at the end of the last glacial period, approximately 15,000 yrs ago. During the Oldest Dryas biozone (> 12,700 radiocarbon yrs B.P.) the lake had low primary productivity. After reforestation with birch and later pine, around 12,700 B.P., phases of summer anoxia occurred in the lake. These anoxic conditions were most probably caused by additional carbon input from the catchment, as well as longer phases of stratification due to reduced wind exposure caused by the sheltering effect of increased tree cover. From the Younger Dryas biozone (10,800 to 10,000 radiocarbon yrs B.P.) onwards, Soppensee became meromictic for several millennia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The palynostratigraphy of two sediment cores from Soppensee, Central Switzerland (596 m asl) was correlated with nine regional pollen assemblage zones defined for the Swiss Plateau. This biostratigraphy shows that the sedimentary record of Soppensee includes the last 15 000 years, i.e. the entire Late-glacial and Holocene environmental history. The vegetation history of the Soppensee catchment was inferred by pollen and plant-macrofossil analyses on three different cores taken in the deepest part of the lake basin (27 m). On the basis of a high-resolution varve and calibrated radiocarbonchronology it was possible to estimate pollen accumulation rates, which together with the pollen percentage data, formed the basis for the interpretation of the past vegetation dynamics. The basal sediment dates back to the last glacial. After reforestation with juniper and birch at ca. 12 700 B.P., the vegetation changed at around 12 000 B.P. to a pine-birch woodland and at the onset of the Holocene to a mixed deciduous forest. At ca. 7000 B.P., fir expanded and dominated the vegetation with beech becoming predominant at ca. 50014C-years later until sometime during the Iron Age. Large-scale deforestation, especially during the Middle Ages, altered the vegetation cover drastically. During the Late-glacial period two distinct regressive phases in vegetation development are demonstrated, namely, the Aegelsee oscillation (equivalent to the Older Dryas biozone) and the Younger Dryas biozone. No unambiguous evidence for Holocene climatic change was detected at Soppensee. Human presence is indicated by early cereal pollen and distinct pulses of forest clearance as a result of human activity can be observed from the Neolithic period onwards.