122 resultados para Biomechanics.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To assess if finite element (FE) models can be used to predict deformation of the femoropopliteal segment during knee flexion.
Resumo:
Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20\% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning.
Resumo:
The human spinal column is a complex structure composed of 24 individual vertebrae plus the sacrum. The principal functions of the spine are to protect the spinal cord, to provide mobility to the trunk and to transfer loads from the head and trunk to the pelvis. By nature of a natural sagittal curvature and the relatively flexible intervertebral discs interposed between semi-rigid vertebrae, the spinal column is a compliant structure which can filter out shock and vibrations before they reach the brain. The intrinsic, passive stability of the spine is provided by the discs and surrounding ligamentous structures, and supplemented by the actions of the spinal muscles. The seven intervertebral ligaments which span each pair of adjacent vertebrae and the two synovial joints on each vertebra (facets or zygapophyseal joints) allow controlled, fully three-dimensional motion.
Resumo:
In absence of basic canine hip biomechanics, a specific, consequent three dimensional concept to evaluate the coxofemoral joint was developed for the dog. With the help of a new method to radiologically demonstrate the hip in a physiological standing position several new clinically relevant aspects could be further investigated. For example the breed specific anatomical differences in the hip, and dynamics and the background on "iatrogenic luxations" in HD diagnostics could be shown. The caudal luxation and the growth abnormalities of the hip and their consequences on the whole leg (antetorsion syndrome) as a consequence of inadequate breeding could be demonstrated.
Resumo:
In attempts to elucidate the underlying mechanisms of spinal injuries and spinal deformities, several experimental and numerical studies have been conducted to understand the biomechanical behavior of the spine. However, numerical biomechanical studies suffer from uncertainties associated with hard- and soft-tissue anatomies. Currently, these parameters are identified manually on each mesh model prior to simulations. The determination of soft connective tissues on finite element meshes can be a tedious procedure, which limits the number of models used in the numerical studies to a few instances. In order to address these limitations, an image-based method for automatic morphing of soft connective tissues has been proposed. Results showed that the proposed method is capable to accurately determine the spatial locations of predetermined bony landmarks. The present method can be used to automatically generate patient-specific models, which may be helpful in designing studies involving a large number of instances and to understand the mechanical behavior of biomechanical structures across a given population.