68 resultados para Biomechanical phenomena
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This abstract presents the biomechanical model that is used in the European ContraCancrum project, aiming at simulating tumor evolution in the brain and lung. The construction of the finite element model as well as a simulation of tumor growth are shown. The construction of the mesh is fully automatic and is therefore compatible with a clinical application. This biomechanical model will be later combined to a cellular level simulator also developed in the project.
Resumo:
The optical characteristics of the human cornea depends on the mechanical balance between the intra-ocular pressure and intrinsic tissue stiffness. A wide range of ophthalmic surgical procedures alter corneal biomechanics to induce local or global curvature changes for the correction of visual acuity. Due to the large number of surgical interventions performed every day, a deeper understanding of corneal biomechanics is needed to improve the safety of these procedures and medical devices. The aim of this study is to propose a biomechanical model of the human cornea, based on stromal microstructure. The constitutive mechanical law includes collagen fiber distribution based on X-ray scattering analysis, collagen cross-linking, and fiber uncrimping. Our results showed that the proposed model reproduced inflation and extensiometry experimental data [Elsheikh et al., Curr. Eye Res., 2007; Elsheikh et al., Exp. Eye Res., 2008] successfully. The mechanical properties obtained for different age groups demonstrated an increase in collagen cross-linking for older specimens. In future work such a model could be used to simulate non-symmetric interventions, and provide better surgical planning.
Resumo:
The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 microm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 microm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 microM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases.
Resumo:
During a Christmas party, two male guests started fighting. The perpetrator was allegedly pushed onto a glass table by the victim or fell into the table together with that man so that the glass top broke and caused a cut wound on the perpetrator's back. According to his statement he then threw a fragment of the broken glass table in the direction of the other man hitting him accidentally in a way so that the subclavian artery was severed and he died from exsanguination. Tests on the breaking characteristics of the glass table, the flying behaviour and the kinetics of thrown glass fragments conducted on various models supported the conclusion that the fatal injury on the victim's neck could not have been caused by a thrown glass fragment. It was much more likely that a stab with a blade-shaped glass fragment was the cause of the fatal injuries.
Resumo:
Bullous pemphigoid (BP), the most common autoimmune subepidermal bullous disease, is associated with an autoantibody response to BP180 and BP230, two components of junctional adhesion complexes in human skin promoting dermo-epidermal cohesion. Retrospective analyses demonstrated that these autoantigens harbor several epitopes targeted by autoaggressive B and T cells. The aim of this prospective multicenter study was to assess the evolution of IgG autoantibodies in 35 BP patients over a 12-month observation period. Epitope-spreading (ES) events were detected in 17 of 35 BP patients (49%). They preferentially occurred in an early stage of the disease and were significantly related to disease severity at diagnosis. Moreover, in three patients, spreading of IgG reactivity to intracellular epitopes of BP180 and BP230 was preceded by recognition of the BP180 ectodomain. Finally, IgG reactivity with extracellular epitopes of BP180 and intracellular epitopes of BP230 correlated with the severity of BP in disease course. These findings support the idea that IgG recognition of the BP180 ectodomain is an early and crucial event in BP disease, followed by variable intra- and intermolecular ES events, which likely shape the individual course of BP.
Resumo:
Hydrogels are considered promising for disc regeneration strategies. However, it is currently unknown whether the destruction of the natural interface between nucleus and surrounding structures caused by nucleotomy and an inadequate annulus closure diminishes the mechanical competence of the disc. This in vitro study aimed to clarify these mechanisms and to evaluate whether hydrogels are able to restore the biomechanical behaviour of the disc. Nucleus pressure in an ovine intervertebral disc was measured in vivo during day and night and adapted to an in vitro axial compressive diurnal (15min) and night (30min) load. Effects of different defects on disc height and nucleus pressure were subsequently measured in vitro using 30 ovine motion segments. Following cases were considered: intact; annulus incision repaired by suture and glue; annulus incision with removal and re-implantation of nucleus tissue; and two different hydrogels repaired by suture and glue. The intradiscal pressure in vivo was 0.75MPa during day and 0.5MPa during night corresponding to an in vitro axial compressive force of 130 and 58N, respectively. The compression test showed that neither the implantation of hydrogels nor the re-implantation of the natural nucleus, assumed as being the ideal implant, was able to restore the mechanical functionality of an intact disc. Results indicate the importance of the natural anchorage of the nucleus with its surrounding structures and the relevance of an appropriate annulus closure. Therefore, hydrogels that are able to mimic the mechanical behaviour of the native nucleus may fail in restoring the mechanical behaviour of the disc.
Resumo:
OBJECTIVE: To analyze the biomechanical changes induced by partial lateral corpectomy (PLC) and a combination of PLC and hemilaminectomy in a T13-L3 spinal segment in nonchondrodystrophic dogs. STUDY DESIGN: In vitro biomechanical cadaveric study. SAMPLE POPULATION: T13-L3 spinal segments (n = 10) of nonchondrodystrophic dogs (weighing, 25-38 kg). METHODS: A computed tomography (CT) scan of each T13-L3 spinal segment was performed. A loading simulator for flexibility analysis was used to determine the range of motion (ROM) and neutral zone (NZ) during flexion/extension, lateral bending, and axial rotation. A servohydraulic testing machine was used to determine the changes in stiffness during compression, dorsoventral, and lateral shear. All spines were tested intact, after PLC in the left intervertebral space of L1-L2, and after a combination of PLC and hemilaminectomy. RESULTS: Statistically significant increases in ROM and NZ (P < .05) were detected during flexion/extension and lateral bending when PLC was performed. A significant increase in ROM (P < .001) was noted during axial rotation and flexion after PLC and hemilaminectomy. Stiffness decreased significantly during compression and dorsoventral shear after each procedure. Decreased stiffness during lateral shear was only significant after a combination of both procedures. CONCLUSION: PLC might lead to some spinal instability; these changes are enhanced when a hemilaminectomy is added.