15 resultados para Biology, Neuroscience|Psychology, Psychobiology
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Humans possess a highly developed sensitivity for facial features. This sensitivity is also deployed to non-human beings and inanimate objects such as cars. In the present study we aimed to investigate whether car design has a bearing on the behaviour of pedestrians. Methods: An immersive virtual reality environment with a zebra crossing was used to determine a) whether the minimum accepted distance for crossing the street is bigger for cars with dominant appearance than for cars with friendly appearance (Block 1) and b) whether the speed of dominant cars are overestimated compared to friendly cars (Block 2). In Block 1, the participant's task was to cross the road in front of an approaching car at the latest moment. The point of time when entering and leaving the street was measured. In Block 2 they were asked to estimate the speed of each passing car. An independent sample rated dominant cars as being more dominant, angry and hostile than friendly cars. Results: None of the predictions regarding the car design was confirmed. Instead, there was an effect of starting position: From the centre island, participants entered the road significantly later (smaller accepted distance) and left the road later than when starting from the pavement. Consistently, the speed of the cars was estimated significantly lower when standing on the centre island compared to the pavement. When entering the visual size of the cars as factor (instead of dominance), we found that participants started to cross the road significantly later in front of small cars compared to big cars and that the speed of smaller cars was overestimated compared to big cars (size-speed bias). Conclusions: Car size and starting position, not car design seem to have an influence on road crossing behaviour.
Resumo:
Xenomelia, the "foreign limb syndrome," is characterized by the non-acceptance of one or more of one's own extremities and the resulting desire for elective limb amputation or paralysis. Formerly labeled "body integrity identity disorder" (BIID), the condition was originally considered a psychological or psychiatric disorder, but a brain-centered Zeitgeist and a rapidly growing interest in the neural underpinnings of bodily self-consciousness has shifted the focus toward dysfunctional central nervous system circuits. The present article outlays both mind-based and brain-based views highlighting their shortcomings. We propose that full insight into what should be conceived a "xenomelia spectrum disorder" will require interpretation of individual symptomatology in a social context. A proper social neuroscience of xenomelia respects the functional neuroanatomy of corporeal awareness, but also acknowledges the brain's plasticity in response to an individual's history, which is lived against a cultural background. This integrated view of xenomelia will promote the subfield of consciousness research concerned with the unity of body and self.
Resumo:
Each year, some two million people in the United Kingdom experience visual hallucinations. Infrequent, fleeting visual hallucinations, often around sleep, are a usual feature of life. In contrast, consistent, frequent, persistent hallucinations during waking are strongly associated with clinical disorders; in particular delirium, eye disease, psychosis, and dementia. Research interest in these disorders has driven a rapid expansion in investigatory techniques, new evidence, and explanatory models. In parallel, a move to generative models of normal visual function has resolved the theoretical tension between veridical and hallucinatory perceptions. From initial fragmented areas of investigation, the field has become increasingly coherent over the last decade. Controversies and gaps remain, but for the first time the shapes of possible unifying models are becoming clear, along with the techniques for testing these. This book provides a comprehensive survey of the neuroscience of visual hallucinations and the clinical techniques for testing these. It brings together the very latest evidence from cognitive neuropsychology, neuroimaging, neuropathology, and neuropharmacology, placing this within current models of visual perception. Leading researchers from a range of clinical and basic science areas describe visual hallucinations in their historical and scientific context, combining introductory information with up-to-date discoveries. They discuss results from the main investigatory techniques applied in a range of clinical disorders. The final section outlines future research directions investigating the potential for new understandings of veridical and hallucinatory perceptions, and for treatments of problematic hallucinations. Fully comprehensive, this is an essential reference for clinicians in the fields of the psychology and psychiatry of hallucinations, as well as for researchers in departments, research institutes and libraries. It has strong foundations in neuroscience, cognitive science, optometry, psychiatry, psychology, clinical medicine, and philosophy. With its lucid explanation and many illustrations, it is a clear resource for educators and advanced undergraduate and graduate students.
Resumo:
Spider-phobic individuals are characterized by exaggerated expectancies to be faced with spiders (so-called encounter expectancy bias). Whereas phobic responses have been linked to brain systems mediating fear, little is known about how the recruitment of these systems relates to exaggerated expectancies of threat. We used fMRI to examine spider-phobic and control participants while they imagined visiting different locations in a forest after having received background information about the likelihood of encountering different animals (spiders, snakes, and birds) at these locations. Critically, imagined encounter expectancies modulated brain responses differently in phobics as compared with controls. Phobics displayed stronger negative modulation of activity in the lateral prefrontal cortex, precuneus, and visual cortex by encounter expectancies for spiders, relative to snakes or birds (within-participants analysis); these effects were not seen in controls. Between-participants correlation analyses within the phobic group further corroborated the hypothesis that these phobia-specific modulations may underlie irrationality in encounter expectancies (deviations of encounter expectancies from objective background information) in spider phobia; the greater the negative modulation a phobic participant displayed in the lateral prefrontal cortex, precuneus, and visual cortex, the stronger was her bias in encounter expectancies for spiders. Interestingly, irrationality in expectancies reflected in frontal areas relied on right rather than left hemispheric deactivations. Our data accord with the idea that expectancy biases in spider phobia may reflect deficiencies in cognitive control and contextual integration that are mediated by right frontal and parietal areas.
Resumo:
Post-traumatic stress disorder (PTSD) is a disorder that involves impaired regulation of the fear response to traumatic reminders. This study tested how women with male-perpetrated interpersonal violence-related PTSD (IPV-PTSD) differed in their brain activation from healthy controls (HC) when exposed to scenes of male-female interaction of differing emotional content. Sixteen women with symptoms of IPV-PTSD and 19 HC participated in this study. During magnetic resonance imaging, participants watched a stimulus protocol of 23 different 20 s silent epochs of male-female interactions taken from feature films, which were neutral, menacing or prosocial. IPV-PTSD participants compared with HC showed (i) greater dorsomedial prefrontal cortex (dmPFC) and dorsolateral prefrontal cortex (dlPFC) activation in response to menacing vs prosocial scenes and (ii) greater anterior cingulate cortex (ACC), right hippocampus activation and lower ventromedial prefrontal cortex (vmPFC) activty in response to emotional vs neutral scenes. The fact that IPV-PTSD participants compared with HC showed lower activity of the ventral ACC during emotionally charged scenes regardless of the valence of the scenes suggests that impaired social perception among IPV-PTSD patients transcends menacing contexts and generalizes to a wider variety of emotionally charged male-female interactions.
Resumo:
We investigated the neural mechanisms and the autonomic and cognitive responses associated with visual avoidance behavior in spider phobia. Spider phobic and control participants imagined visiting different forest locations with the possibility of encountering spiders, snakes, or birds (neutral reference category). In each experimental trial, participants saw a picture of a forest location followed by a picture of a spider, snake, or bird, and then rated their personal risk of encountering these animals in this context, as well as their fear. The greater the visual avoidance of spiders that a phobic participant demonstrated (as measured by eye tracking), the higher were her autonomic arousal and neural activity in the amygdala, orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and precuneus at picture onset. Visual avoidance of spiders in phobics also went hand in hand with subsequently reduced cognitive risk of encounters. Control participants, in contrast, displayed a positive relationship between gaze duration toward spiders, on the one hand, and autonomic responding, as well as OFC, ACC, and precuneus activity, on the other hand. In addition, they showed reduced encounter risk estimates when they looked longer at the animal pictures. Our data are consistent with the idea that one reason for phobics to avoid phobic information may be grounded in heightened activity in the fear circuit, which signals potential threat. Because of the absence of alternative efficient regulation strategies, visual avoidance may then function to down-regulate cognitive risk evaluations for threatening information about the phobic stimuli. Control participants, in contrast, may be characterized by a different coping style, whereby paying visual attention to potentially threatening information may help them to actively down-regulate cognitive evaluations of risk.
Resumo:
Wishful thinking (WT) implies the overestimation of the likelihood of desirable events. It occurs for outcomes of personal interest, but also for events of interest to others we like. We investigated whether WT is grounded on low-level selective attention or on higher level cognitive processes including differential weighting of evidence or response formation. Participants in our MRI study predicted the likelihood that their favorite or least favorite team would win a football game. Consistent with expectations, favorite team trials were characterized by higher winning odds. Our data demonstrated activity in a cluster comprising parts of the left inferior occipital and fusiform gyri to distinguish between favorite and least favorite team trials. More importantly, functional connectivities of this cluster with the human reward system were specifically involved in the type of WT investigated in our study, thus supporting the idea of an attention bias generating WT. Prefrontal cortex activity also distinguished between the two teams. However, activity in this region and its functional connectivities with the human reward system were altogether unrelated to the degree of WT reflected in the participants' behavior and may rather be related to social identification, ensuring the affective context necessary for WT to arise.
Resumo:
Exposure to chronic stress is associated with an increased incidence of neuropsychiatric dysfunction. The current study evaluated two competing hypotheses, the cumulative stress and the match/mismatch hypothesis of neuropsychiatric dysfunction, using two paradigms relating to exposure to “stress”: pre-weaning maternal separation and post-weaning isolation-housing. C57BL/6 offspring were reared under four conditions: typical animal facility rearing (AFR, control), early handling (EH, daily 15 min separation from dam), maternal separation (MS, daily 4 hr separation from dam), and maternal and peer separation (MPS, daily 4 hr separation from dam and from littermates). After weaning, mice were either housed socially (2–3/cage) or in isolation (1/cage) and then tested for prepulse inhibition in adulthood. Isolation-housed MPS subjects displayed greater deficits in prepulse inhibition relative to socially-housed MPS subjects while socially-housed AFR subjects displayed greater deficits in prepulse inhibition relative to isolation-housed AFR subjects. The results indicate that these treatment conditions represent a potentially valuable model for evaluating the match/mismatch hypothesis in regards to neuropsychiatric dysfunction.