28 resultados para Biology, Neuroscience|Engineering, Biomedical|Engineering, Electronics and Electrical
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Recent studies have shown that the nociceptive withdrawal reflex threshold (NWR-T) and the electrical pain threshold (EP-T) are reliable measures in pain-free populations. However, it is necessary to investigate the reliability of these measures in patients with chronic pain in order to translate these techniques from laboratory to clinic. The aims of this study were to determine the test-retest reliability of the NWR-T and EP-T after single and repeated (temporal summation) electrical stimulation in a group of patients with chronic low back pain, and to investigate the association between the NWR-T and the EP-T. To this end, 25 patients with chronic pain participated in three identical sessions, separated by 1 week in average, in which the NWR-T and the EP-T to single and repeated stimulation were measured. Test-retest reliability was assessed using intra-class correlation coefficient (ICC), coefficient of variation (CV), and Bland-Altman analysis. The association between the thresholds was assessed using the coefficient of determination (r (2)). The results showed good-to-excellent reliability for both NWR-T and EP-T in all cases, with average ICC values ranging 0.76-0.90 and average CV values ranging 12.0-17.7%. The association between thresholds was better after repeated stimulation than after single stimulation, with average r (2) values of 0.83 and 0.56, respectively. In conclusion, the NWR-T and the EP-T are reliable assessment tools for assessing the sensitivity of spinal nociceptive pathways in patients with chronic pain.
Resumo:
BACKGROUND A majority of patients undergoing ablation of ventricular tachycardia have implanted devices precluding substrate imaging with delayed-enhancement MRI. Contrast-enhanced multidetector computed tomography (MDCT) can depict myocardial wall thickness with submillimetric resolution. We evaluated the relationship between regional myocardial wall thinning (WT) imaged by MDCT and arrhythmogenic substrate in postinfarction ventricular tachycardia. METHODS AND RESULTS We studied 13 consecutive postinfarction patients undergoing MDCT before ablation. MDCT data were integrated with high-density 3-dimensional electroanatomic maps acquired during sinus rhythm (endocardium, 509±291 points/map; epicardium, 716±323 points/map). Low-voltage areas (<1.5 mV) and local abnormal ventricular activities (LAVA) during sinus rhythm were assessed with regard to the WT. A significant correlation was found between the areas of WT <5 mm and endocardial low voltage (correlation-R=0.82; P=0.001), but no such correlation was found in the epicardium. The WT <5 mm area was smaller than the endocardial low-voltage area (54 cm(2) [Q1-Q3, 46-92] versus 71 cm(2) [Q1-Q3, 59-124]; P=0.001). Among a total of 13 060 electrograms reviewed in the whole study population, 538 LAVA were detected and analyzed. LAVA were located within the WT <5 mm (469/538 [87%]) or at its border (100% within 23 mm). Very late LAVA (>100 ms after QRS complex) were almost exclusively detected within the thinnest area (93% in the WT<3 mm). CONCLUSIONS Regional myocardial WT correlates to low-voltage regions and distribution of LAVA critical for the generation and maintenance of postinfarction ventricular tachycardia. The integration of MDCT WT with 3-dimensional electroanatomic maps can help focus mapping and ablation on the culprit regions, even when MRI is precluded by the presence of implanted devices.
Resumo:
One key problem in modern medical imaging is linking measured data and actual physiological quantities. In this article we derive such a link between the electrical bioimpedance of lung parenchyma, which can be measured by electrical impedance tomography (EIT), and the magnitude of regional ventilation, a key to understanding lung mechanics and developing novel protective ventilation strategies. Two rat-derived three-dimensional alveolar microstructures obtained from synchrotron-based x-ray tomography are each exposed to a constant potential difference for different states of ventilation in a finite element simulation. While the alveolar wall volume remains constant during stretch, the enclosed air volume varies, similar to the lung volume during ventilation. The enclosed air, serving as insulator in the alveolar ensemble, determines the resulting current and accordingly local tissue bioimpedance. From this we can derive a relationship between lung tissue bioimpedance and regional alveolar ventilation. The derived relationship shows a linear dependence between air content and tissue impedance and matches clinical data determined from a ventilated patient at the bedside.
Resumo:
Cephalometric analysis is an essential clinical and research tool in orthodontics for the orthodontic analysis and treatment planning. This paper presents the evaluation of the methods submitted to the Automatic Cephalometric X-Ray Landmark Detection Challenge, held at the IEEE International Symposium on Biomedical Imaging 2014 with an on-site competition. The challenge was set to explore and compare automatic landmark detection methods in application to cephalometric X-ray images. Methods were evaluated on a common database including cephalograms of 300 patients aged six to 60 years, collected from the Dental Department, Tri-Service General Hospital, Taiwan, and manually marked anatomical landmarks as the ground truth data, generated by two experienced medical doctors. Quantitative evaluation was performed to compare the results of a representative selection of current methods submitted to the challenge. Experimental results show that three methods are able to achieve detection rates greater than 80% using the 4 mm precision range, but only one method achieves a detection rate greater than 70% using the 2 mm precision range, which is the acceptable precision range in clinical practice. The study provides insights into the performance of different landmark detection approaches under real-world conditions and highlights achievements and limitations of current image analysis techniques.
Resumo:
Polymer implants are interesting alternatives to the contemporary load-bearing implants made from metals. Polyetheretherketone (PEEK), a well-established biomaterial for example, is not only iso-elastic to bone but also permits investigating the surrounding soft tissues using magnetic resonance imaging or computed tomography, which is particularly important for cancer patients. The commercially available PEEK bone implants, however, require costly coatings, which restricts their usage. As an alternative to coatings, plasma activation can be applied. The present paper shows the plasma-induced preparation of nanostructures on polymer films and on injection-molded micro-cantilever arrays and the associated chemical modifications of the surface. In vitro cell experiments indicate the suitability of the activation process. In addition, we show that microstructures such as micro-grooves 1 μm deep and 20 μm wide cause cell alignment. The combination of micro-injection molding, simultaneous microstructuring using inserts/bioreplica and plasma treatments permits the preparation of polymer implants with nature-analogue, anisotropic micro- and nanostructures.
Resumo:
Computer vision-based food recognition could be used to estimate a meal's carbohydrate content for diabetic patients. This study proposes a methodology for automatic food recognition, based on the Bag of Features (BoF) model. An extensive technical investigation was conducted for the identification and optimization of the best performing components involved in the BoF architecture, as well as the estimation of the corresponding parameters. For the design and evaluation of the prototype system, a visual dataset with nearly 5,000 food images was created and organized into 11 classes. The optimized system computes dense local features, using the scale-invariant feature transform on the HSV color space, builds a visual dictionary of 10,000 visual words by using the hierarchical k-means clustering and finally classifies the food images with a linear support vector machine classifier. The system achieved classification accuracy of the order of 78%, thus proving the feasibility of the proposed approach in a very challenging image dataset.
Resumo:
This paper addresses the problem of fully-automatic localization and segmentation of 3D intervertebral discs (IVDs) from MR images. Our method contains two steps, where we first localize the center of each IVD, and then segment IVDs by classifying image pixels around each disc center as foreground (disc) or background. The disc localization is done by estimating the image displacements from a set of randomly sampled 3D image patches to the disc center. The image displacements are estimated by jointly optimizing the training and test displacement values in a data-driven way, where we take into consideration both the training data and the geometric constraint on the test image. After the disc centers are localized, we segment the discs by classifying image pixels around disc centers as background or foreground. The classification is done in a similar data-driven approach as we used for localization, but in this segmentation case we are aiming to estimate the foreground/background probability of each pixel instead of the image displacements. In addition, an extra neighborhood smooth constraint is introduced to enforce the local smoothness of the label field. Our method is validated on 3D T2-weighted turbo spin echo MR images of 35 patients from two different studies. Experiments show that compared to state of the art, our method achieves better or comparable results. Specifically, we achieve for localization a mean error of 1.6-2.0 mm, and for segmentation a mean Dice metric of 85%-88% and a mean surface distance of 1.3-1.4 mm.
Resumo:
Relationships between mineralization, collagen orientation and indentation modulus were investigated in bone structural units from the mid-shaft of human femora using a site-matched design. Mineral mass fraction, collagen fibril angle and indentation moduli were measured in registered anatomical sites using backscattered electron imaging, polarized light microscopy and nano-indentation, respectively. Theoretical indentation moduli were calculated with a homogenization model from the quantified mineral densities and mean collagen fibril orientations. The average indentation moduli predicted based on local mineralization and collagen fibers arrangement were not significantly different from the average measured experimentally with nanoindentation (p=0.9). Surprisingly, no substantial correlation of the measured indentation moduli with tissue mineralization and/or collagen fiber arrangement was found. Nano-porosity, micro-damage, collagen cross-links, non-collagenous proteins or other parameters affect the indentation measurements. Additional testing/simulation methods need to be considered to properly understand the variability of indentation moduli, beyond the mineralization and collagen arrangement in bone structural units.
Resumo:
This paper presents the first analysis of the input impedance and radiation properties of a dipole antenna, placed on top of Fan 's three-dimensional electromagnetic bandgap (EBG) structure, (Applied Physics Letters, 1994) constructed using a high dielectric constant ceramic. The best position of the dipole on the EBG surface is determined following impedance and radiation pattern analyses. Based on this optimum configuration an integrated Schottky heterodyne detector was designed, manufactured and tested from 0.48 to 0.52 THz. The main antenna features were not degraded by the high dielectric constant substrate due to the use of the EBG approach. Measured radiation patterns are in good agreement with the predicted ones.