207 resultados para Biology, Molecular|Chemistry, Biochemistry

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently several novel and previously reported non-protein-coding RNAs (ncRNAs) have been identified to be upregulated upon Epstein-Barr virus (EBV) infection in human B-lymphocytes. A group of these significantly upregulated ncRNAs are called vault RNAs (vtRNAs). ,b Only about 5% of the total cellular vtRNAs are connected to the vault particle, the largest known ribonucleoprotein particle (RNP) in eukaryotic cells. However the function of this ncRNA family and moreover of the vault particle remains still rather unclear. Our previous findings suggest a link between EBV infection and vtRNA expression. Consequently we are interested which part of the viral genome is responsible for the upregulation and moreover which function the vtRNAs might possess during virus propagation. To address this question we have separately overexpressed specific EBV-encoded, latently expressed proteins in BL2-cells to determine the influence on the vault RNA levels. Thereby we identified one EBV-encoded protein, called Latent Membrane Protein 1 (LMP1), which significantly contributes to the vtRNA upregulation. We used LMP1 mutants to characterize the region of the protein and the responsible pathway for triggering the elevated vtRNA expression. Our results suggest that the NFkB- pathway might be involved in this process. To investigate a possible functional connection between the vtRNA and EBV infection, we have overexpressed vtRNA1-1 in BL41, a cell line usually not expressing this vault RNA. We show that overexpression of vtRNA1-1 leads to a better viral establishment and markedly protects cells from undergoing apoptosis. Knock-down of the major vault protein, the main component of the vault particle, had no effect on EBV infection and apoptosis resistance. Thus these results support the view that the observed phenotype is caused by the vtRNA rather than the vault particle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of single molecule fluorescence microscopy has allowed experimental molecular biophysics and biochemistry to transcend traditional ensemble measurements, where the behavior of individual proteins could not be precisely sampled. The recent explosion in popularity of new super-resolution and super-localization techniques coupled with technical advances in optical designs and fast highly sensitive cameras with single photon sensitivity and millisecond time resolution have made it possible to track key motions, reactions, and interactions of individual proteins with high temporal resolution and spatial resolution well beyond the diffraction limit. Within the purview of membrane proteins and ligand gated ion channels (LGICs), these outstanding advances in single molecule microscopy allow for the direct observation of discrete biochemical states and their fluctuation dynamics. Such observations are fundamentally important for understanding molecular-level mechanisms governing these systems. Examples reviewed here include the effects of allostery on the stoichiometry of ligand binding in the presence of fluorescent ligands; the observation of subdomain partitioning of membrane proteins due to microenvironment effects; and the use of single particle tracking experiments to elucidate characteristics of membrane protein diffusion and the direct measurement of thermodynamic properties, which govern the free energy landscape of protein dimerization. The review of such characteristic topics represents a snapshot of efforts to push the boundaries of fluorescence microscopy of membrane proteins to the absolute limit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the homo-DNA templated Staudinger reduction of the profluorophore rhodamine azide and have applied this reaction to the detection of natural DNA with a hybrid homo-DNA/DNA molecular beacon. In this system the sensing and the reporting unit are bioorthogonal to each other which facilitates sequence design and increases fidelity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CsTx-1, the main neurotoxic acting peptide in the venom of the spider Cupiennius salei, is composed of 74 amino acid residues, exhibits an inhibitory cysteine knot motif, and is further characterized by its highly cationic charged C terminus. Venom gland cDNA library analysis predicted a prepropeptide structure for CsTx-1 precursor. In the presence of trifluoroethanol, CsTx-1 and the long C-terminal part alone (CT1-long; Gly-45-Lys-74) exhibit an α-helical structure, as determined by CD measurements. CsTx-1 and CT1-long are insecticidal toward Drosophila flies and destroys Escherichia coli SBS 363 cells. CsTx-1 causes a stable and irreversible depolarization of insect larvae muscle cells and frog neuromuscular preparations, which seem to be receptor-independent. Furthermore, this membranolytic activity could be measured for Xenopus oocytes, in which CsTx-1 and CT1-long increase ion permeability non-specifically. These results support our assumption that the membranolytic activities of CsTx-1 are caused by its C-terminal tail, CT1-long. Together, CsTx-1 exhibits two different functions; as a neurotoxin it inhibits L-type Ca(2+) channels, and as a membranolytic peptide it destroys a variety of prokaryotic and eukaryotic cell membranes. Such a dualism is discussed as an important new mechanism for the evolution of spider venomous peptides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single molecular junction conductances of a family of five symmetric and two unsymmetric perylene tetracarboxylic bisimides (PBI) with variable bay-area substituents were studied employing a scanning tunneling microscope (STM)-based break junction technique. The stretching experiments provide clear evidence for the formation of single molecular junctions and π–π stacked dimers. Electrolyte gating demonstrates a distinct gating effect in symmetric molecular junctions, which strongly depends on molecular structure and properties of the solvent/electrolyte. Weak π–π-coupling in the unsymmetric dimers prevents rectification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The charge transport properties of a catechol-type dithiol-terminated oligo-phenylene-ethynylene was investigated by cyclic voltammetry (CV) and by the scanning tunnelling microscopy break junction technique (STM-BJ). Single molecule charge transport experiments demonstrated the existence of high and low conductance regions. The junction conductance is rather weakly dependent on the redox state of the bridging molecule. However, a distinct dependence of junction formation probability and of relative stretching distances of the catechol- and quinone-type molecular junctions is observed. Substitution of the central catechol ring with alkoxy-moieties and the combination with a topological analysis of possible π-electron pathways through the respective molecular skeletons lead to a working hypothesis, which could rationalize the experimentally observed conductance characteristics of the redox-active nanojunctions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Employing a scanning tunneling microscopy based beak junction technique and mechanically controlled break junction experiments, we investigated tolane (diphenylacetylene)-type single molecular junctions having four different anchoring groups (SH, pyridyl (PY), NH2, and CN) at a solid/liquid interface. The combination of current–distance and current–voltage measurements and their quantitative statistical analysis revealed the following sequence for junction formation probability and stability: PY > SH > NH2 > CN. For all single molecular junctions investigated, we observed the evolution through multiple junction configurations, with a particularly well-defined binding geometry for PY. The comparison of density functional theory type model calculations and molecular dynamics simulations with the experimental results revealed structure and mechanistic details of the evolution of the different types of (single) molecular junctions upon stretching quantitatively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss here principal biochemical transformations of retinoid molecules in the visual cycle. We focus our analysis on the accumulating evidence of alternate pathways and functional redundancies in the cycle. The efficiency of the visual cycle depends, on one hand, on fast regeneration of the photo-bleached chromophores. On the other hand, it is crucial that the cyclic process should be highly selective to avoid accumulation of byproducts. The state-of-the-art knowledge indicates that single enzymatically active components of the cycle are not strictly selective and may require chaperones to enhance their rates. It appears that protein–protein interactions significantly improve the biological stability of the visual cycle. In particular, synthesis of thermodynamically less stable 11-cis-retinoid conformers is favored by physical interactions of the isomerases present in the retina with cellular retinaldehyde binding protein