3 resultados para Biology, Genetics|Biology, Cell|Health Sciences, Pathology

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nail is the largest skin appendage. It grows continuously through life in a non-cyclical manner; its growth is not hormone-dependent. The nail of the middle finger of the dominant hand grows fastest with approximately 0.1 mm/day, whereas the big toe nail grows only 0.03-0.05 mm/d. The nails' size and shape vary characteristically from finger to finger and from toe to toe, for which the size and shape of the bone of the terminal phalanx is responsible. The nail apparatus consists of both epithelial and connective tissue components. The matrix epithelium is responsible for the production of the nail plate whereas the nail bed epithelium mediates firm attachment. The hyponychium is a specialized structure sealing the subungual space and allowing the nail plate to physiologically detach from the nail bed. The proximal nail fold covers most of the matrix. Its free end forms the cuticle which seals the nail pocket or cul-de-sac. The dermis of the matrix and nail bed is specialized with a morphogenetic potency. The proximal and lateral nail folds form a frame on three sides giving the nail stability and allowing it to grow out. The nail protects the distal phalanx, is an extremely versatile tool for defense and dexterity and increases the sensitivity of the tip of the finger. Nail apparatus, finger tip, tendons and ligaments of the distal interphalangeal joint form a functional unit and cannot be seen independently. The nail organ has only a certain number of reaction patterns that differ in many respects from hairy and palmoplantar skin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue growth and regeneration are autonomous, stem-cell-mediated processes in which stem cells within the organ self-renew and differentiate to create new cells, leading to new tissue. The processes of growth and regeneration require communication and interplay between neighboring cells. In particular, cell competition, which is a process in which viable cells are actively eliminated by more competitive cells, has been increasingly implicated to play an important role. Here, we discuss the existing literature regarding the current landscape of cell competition, including classical pathways and models, fitness fingerprint mechanisms, and immune system mechanisms of cell competition. We further discuss the clinical relevance of cell competition in the physiological processes of tissue growth and regeneration, highlighting studies in clinically important disease models, including oncological, neurological, and cardiovascular diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell-cell intercalation is used in several developmental processes to shape the normal body plan. There is no clear evidence that intercalation is involved in pathologies. Here we use the proto-oncogene myc to study a process analogous to early phase of tumour expansion: myc-induced cell competition. Cell competition is a conserved mechanism driving the elimination of slow-proliferating cells (so-called 'losers') by faster-proliferating neighbours (so-called 'winners') through apoptosis and is important in preventing developmental malformations and maintain tissue fitness. Here we show, using long-term live imaging of myc-driven competition in the Drosophila pupal notum and in the wing imaginal disc, that the probability of elimination of loser cells correlates with the surface of contact shared with winners. As such, modifying loser-winner interface morphology can modulate the strength of competition. We further show that elimination of loser clones requires winner-loser cell mixing through cell-cell intercalation. Cell mixing is driven by differential growth and the high tension at winner-winner interfaces relative to winner-loser and loser-loser interfaces, which leads to a preferential stabilization of winner-loser contacts and reduction of clone compactness over time. Differences in tension are generated by a relative difference in F-actin levels between loser and winner junctions, induced by differential levels of the membrane lipid phosphatidylinositol (3,4,5)-trisphosphate. Our results establish the first link between cell-cell intercalation induced by a proto-oncogene and how it promotes invasiveness and destruction of healthy tissues.