10 resultados para Biofilm Formation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The aim of the present study was to test the effects of interdental cleansing with dental floss on supragingival biofilm removal in natural dentition during a 3-week period of experimental biofilm accumulation. MATERIALS AND METHODS: The present study was performed as a single-blind, parallel, randomised, controlled clinical trial using the experimental gingivitis model (Löe et al, 1965). Thirty-two students were recruited and assigned to one of the following experimental or control groups: Group A used a fluoride-containing dentifrice (NaF dentifrice) on a toothbrush for 60 s twice a day, Group B used an unwaxed dental floss twice a day, Group C used a waxed dental floss twice a day in every interproximal space and Group D rinsed twice a day for 60 s with drinking water (control). RESULTS: During 21 days of abolished oral hygiene, the groups developed various amounts of plaque and gingivitis. Neither of the cleansing protocols alone allowed the prevention of gingivitis development. Toothbrushing alone yielded better outcomes than did any of the flossing protocols. Interdental cleansing with a waxed floss had better biofilm removal effects than with unwaxed floss. CONCLUSIONS: Toothbrushing without interdental cleansing using dental floss and interdental cleansing alone cannot prevent the development of gingivitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chapter 1 gives an overview about Streptococcus pneumoniae, its role as a human pathogen and its virulence factors. Additionally, biofilm development and its relevance in clinics are introduced, and the innate immune response to pneumococcus as well as bacterial-viral interactions in the upper respiratory tract are also discussed. Chapter 2 emphasizes the three main topics of this thesis: the role of capsule and pneumolysin in the immune response in the respiratory tract, biofilm formation of S. pneumoniae serotypes and commensal streptococci in vitro, and host innate immune responses to RSV and S. pneumoniae during in vitro co-infections. Aims and hypotheses are provided here. Chapter 3 is divided into two parts: First, the release of the pro-inflammatory cytokines CXCL8 and IL-6 from the human pharyngeal epithelial cell line Detroit 562 and from human bronchial epithelial cells (iHBEC) is described in response to S. pneumoniae. Capsule was shown to suppress the release of both cytokines in both cell lines tested, but release was much less from iHBEC cells. During intranasal colonization of mice, suppression of CXCL8 release by the capsule was also observed in vivo, but the effect was only measured in the absence of pneumolysin. Long term, stable nasopharyngeal carriage in a mouse model resulted in the dissemination of nonencapsulated pneumococci into the lungs, whereas encapsulated strains remained in the nasopharynx. The S. pneumoniae capsule thus plays a role in modulation of the pro-inflammatory immune response in the respiratory tract. Second, results on immunological cells and immune regulation in a long term, stable nasopharyngeal carriage mouse model are presented. Mice were infected with encapsulated or nonencapsulated pneumococcal strains, and after 1, 3, 8 and 15 days, were sacrificed to evaluate the numbers of CD45+ cells, neutrophils, macrophages, FoxP3+ regulatory T-cells and CD3+ T-cells in the nasal mucosa as well as the amount of secreted IL-10 in the nasopharynx. Nasopharyngeal colonization which is effectively silent resulted in the stimulation of FoxP3+ regulatory T-cells and IL-10 release associated with immune homeostasis, whereas lung infiltration was required to increase the number of neutrophils and macrophages resulting in a stronger innate immune response in the nasal mucosa. Chapter 4 contains results of mono- and co-stimulation using RSV and pneumococci or pneumococcal virulence factors on the human bronchial epithelial cell line BEAS-2B. An increase in CXCL8 and IL-6 levels was measured for mixed stimulations of RSV and pneumococcus when encapsulated bacteria were used. Increasing pneumolysin concentrations resulted in enhanced CXCL8 levels. Priming of bronchial epithelial cells with RSV opens the door for more severe pneumococcal infections. Chapter 5 is composed of two parts: The first part describes initial biofilm formation of serotypes 6B and 7F in a static model in vitro. Biofilms of both serotypes contained SCVs, but only serotype 6B increased in SCV formation between 16 and 65h of incubation. SCV stability was tested by passaging clones in complex medium, where SCV production is not associated with advantages in growth. Serotype 6B lost the SCV phenotype indicating a fast adaptation to a changing nutritional environment. Limitations of our in vitro model are discussed. The second part is about initial biofilm formation of mixed culture growth of S. pneumoniae with commensal streptococci. Competition dominates this process. S. oralis and pneumococcus compete for nutrients, whereas mixed species growth of S. mitis or S. pseudopneumoniae with S. pneumoniae is mainly influenced by other factors. In Chapter 6 the findings of chapters 3, 4 and 5 are discussed and an outlook for further studies is provided. Chapters 7, 8, 9, 10 and 11 contain the references, the acknowledgements, the curriculum vitae, the appendix and the declaration of originality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS The aims of this double-blind, controlled, crossover study were to assess the influence of food preservatives on in situ dental biofilm growth and vitality, and to evaluate their influence on the ability of dental biofilm to demineralize underlying enamel over a period of 14 days. MATERIALS AND METHODS Twenty volunteers wore appliances with six specimens each of bovine enamel to build up intra-oral biofilms. During four test cycles of 14 days, the subjects had to place the appliance in one of the assigned controls or active solutions twice a day for a minute: negative control 0.9 % saline, 0.1 % benzoate (BA), 0.1 % sorbate (SA) and 0.2 % chlorhexidine (CHX positive control). After 14 days, the biofilms on two of the slabs were stained to visualize vital and dead bacteria to assess biofilm thickness (BT) and bacterial vitality (BV). Further, slabs were taken to determine mineral loss (ML), by quantitative light-induced laser fluorescence (QLF) and transversal microradiography (TMR), moreover the lesion depths (LD). RESULTS Nineteen subjects completed all test cycles. Use of SA, BA and CHX resulted in a significantly reduced BV compared to NaCl (p < 0.001). Only CHX exerted a statistically significant retardation in BT as compared to saline. Differences between SA and BA were not significant (p > 0.05) for both parameters. TMR analysis revealed the highest LD values in the NaCl group (43.6 ± 44.2 μm) and the lowest with CHX (11.7 ± 39.4 μm), while SA (22.9 ± 45.2 μm) and BA (21.4 ± 38.5 μm) lay in between. Similarly for ML, the highest mean values of 128.1 ± 207.3 vol% μm were assessed for NaCl, the lowest for CHX (-16.8 ± 284.2 vol% μm), while SA and BA led to values of 83.2 ± 150.9 and 98.4 ± 191.2 vol% μm, respectively. With QLF for both controls, NaCl (-33.8 ± 101.3 mm(2) %) and CHX (-16.9 ± 69.9 mm(2) %), negative values were recorded reflecting a diminution of fluorescence, while positive values were found with SA (33.9 ± 158.2 mm(2) %) and BA (24.8 ± 118.0 mm(2) %) depicting a fluorescence gain. These differences were non-significant (p > 0.05). CONCLUSION The biofilm model permited the assessment of undisturbed oral biofilm formation influenced by antibacterial components under clinical conditions for a period of 14 days. An effect of BA and SA on the demineralization of enamel could be demonstrated by TMR and QLF, but these new findings have to be seen as a trend. As part of our daily diet, these preservatives exert an impact on the metabolism of the dental biofilm, and therefore may even influence demineralization processes of the underlying dental enamel in situ.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Poly(ethylene oxide) (PEO) has long been used as an additive in toothpaste, partly because it reduces biofilm formation on teeth. It does not, however, reduce the formation of dental calculus or support the remineralization of dental enamel or dentine. The present article describes the synthesis of new block copolymers on the basis of PEO and poly(3-sulfopropyl methacrylate) blocks using atom transfer radical polymerization. The polymers have very large molecular weights (over 10(6) g/mol) and are highly water-soluble. They delay the precipitation of calcium phosphate from aqueous solution but, upon precipitation, lead to relatively monodisperse hydroxyapatite (HAP) spheres. Moreover, the polymers inhibit the bacterial colonization of human enamel by Streptococcus gordonii, a pioneer bacterium in oral biofilm formation, in vitro. The formation of well-defined HAP spheres suggests that a polymer-induced liquid precursor phase could be involved in the precipitation process. Moreover, the inhibition of bacterial adhesion suggests that the polymers could be utilized in caries prevention.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Honey has been discussed as a therapeutic option in wound healing since ancient time. It might be also an alternative to the commonly used antimicrobials in periodontitis treatment. The in-vitro study was aimed to determine the antimicrobial efficacy against Porphyromonas gingivalis as a major periodontopathogen. METHODS One Manuka and one domestic beekeeper honey have been selected for the study. As a screening, MICs of the honeys against 20 P. gingivalis strains were determined. Contents of methylglyoxal and hydrogen peroxide as the potential antimicrobial compounds were determined. These components (up to 100 mg/l), propolis (up to 200 mg/l) as well as the two honeys (up to 10% w/v) were tested against four P. gingivalis strains in planktonic growth and in a single-species biofilm. RESULTS 2% of Manuka honey inhibited the growth of 50% of the planktonic P. gingivalis, the respective MIC50 of the German beekeeper honey was 5%. Manuka honey contained 1.87 mg/kg hydrogen peroxide and the domestic honey 3.74 mg/kg. The amount of methylglyoxal was found to be 2 mg/kg in the domestic honey and 982 mg/kg in the Manuka honey. MICs for hydrogen peroxide were 10 mg/l - 100 mg/l, for methylglyoxal 5 - 20 mg/l, and for propolis 20 mg/l - 200 mg/l. 10% of both types of honey inhibited the formation of P. gingivalis biofilms and reduced the numbers of viable bacteria within 42 h-old biofilms. Neither a total prevention of biofilm formation nor a complete eradication of a 42 h-old biofilm by any of the tested compounds and the honeys were found. CONCLUSIONS Honey acts antibacterial against P. gingivalis. The observed pronounced effects of Manuka honey against planktonic bacteria but not within biofilm can be attributed to methylglyoxal as the characteristic antimicrobial component.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The antimicrobial activity of taurolidine was compared with minocycline against microbial species associated with periodontitis (four single strains and a 12-species mixture). Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs), killing as well as activities on established and forming single-species biofilms and a 12-species biofilm were determined. The MICs of taurolidine against single species were always 0.31 mg/ml, the MBCs were 0.64 mg/ml. The used mixed microbiota was less sensitive to taurolidine, MIC and the MBC was 2.5 mg/ml. The strains and the mixture were completely killed by 2.5 mg/ml taurolidine, whereas 256 μg/ml minocycline reduced the bacterial counts of the mixture by 5 log10 colony forming units (cfu). Coating the surface with 10 mg/ml taurolidine or 256 μg/ml minocycline prevented completely biofilm formation of Porphyromonas gingivalis ATCC 33277 but not of Aggregatibacter actinomycetemcomitans Y4 and the mixture. On 4.5 d old biofilms, taurolidine acted concentration dependent with a reduction by 5 log10 cfu (P. gingivalis ATCC 33277) and 7 log10 cfu (A. actinomycetemcomitans Y4) when applying 10 mg/ml. Minocycline decreased the cfu counts by 1-2 log10 cfu independent of the used concentration. The reduction of the cfu counts in the 4.5 d old multi-species biofilms was about 3 log10 cfu after application of any minocycline concentration and after using 10 mg/ml taurolidine. Taurolidine is active against species associated with periodontitis, even within biofilms. Nevertheless a complete elimination of complex biofilms by taurolidine seems to be impossible and underlines the importance of a mechanical removal of biofilms prior to application of taurolidine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bovine mycoplasmosis due to Mycoplasma bovis causes several important bovine diseases such as pneumonia, mastitis, arthritis, otitis, genital disorders or keratoconjunctivitis. Variable surface lipoproteins, adhesion, invasion of host cells, modulation of the host immune system, biofilm formation and the release of secondary metabolites like hydrogen peroxide, as well as synergistic infections with other bacterial or viral pathogens are among the more significantly studied characteristics of the bacterium. The aim of this review is to summarize the current knowledge regarding the virulence of M. bovis and additionally, factors contributing to the dissemination and persistence of this pathogen in the bovine host will be discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycopeptide dendrimers as Pseudomonas aeruginosa biofilm inhibitors. Glycopeptide dendrimers are being developed for inhibition of pathogen adhesion to host cells, a process mediated by carbohydrate-lectins interactions. Such compounds could be used in the treatment of infections by pathogenic bacteria such as Pseudomonas aeruginosa that can be resistant to known antibiotics. Pseudomonas aeruginosa produces two lectins, the fucose binding LecB and the galactose binding LecA. Both lectins have been shown to be virulence factors, involved in cell adhesion and biofilms formation. Screening combinatorial libraries of fucosylated peptide dendrimers led to the glycopeptide dendrimer (C-Fuc-LysProLeu)4(LysPheLysIle)2 LysHisIleNH2. This dendrimer binds the lectin LecB with submicromolar IC50 and shows potent inhibition of P. aeruginosa biofilms for both the laboratory strain PAO1 and for clinical isolates [1]. Appending the peptide dendrimer portion of FD2 with galactosy endgroups gave galactosylpeptide dendrimers as potent ligands for LecA which also act as biofilm inhibitors. Structure-activity relationship studies demonstrated that multivalency was essential for strong binding and biofilm inhibition. [2]The results open the way to develop therapeutic agents based on glycopeptide dendrimers. Peptide dendrimers with antimicrobial properties and good cell penetration are other applications of dendritic peptides we are now investigating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cerebrospinal fluid (CSF) shunts carry a high risk of complications. Infections represent a major cause of shunt failure. Diagnosis and therapy of such infections are complicated by the formation of bacterial biofilms attached to shunt surfaces. This study correlated the pathophysiology and clinical course of biofilm infections with microscopical findings on the respective shunts. Surface irregularities, an important risk-factor for shunt colonisation with bacteria, were found to increase over time because of silicone degradation. Scanning electron-microscopy (SEM) documented residual biological material (dead biofilm), which can further promote extant bacterial adhesion, on newly manufactured shunts. Clinical course and SEM both documented bacterial dissemination against CSF flow and the monodirectional valve. In all cases, biofilms grew on both the inner and outer surfaces of the shunts. Microscopy and conventional culture detected all bacterial shunt infections. Analyses of 16S rDNA sequences using conserved primers identified bacteria in only one of three cases, probably because of previous formalin fixation of the samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The galactose specific lectin LecA partly mediates the formation of antibiotic resistant biofilms by Pseudomonas aeruginosa, an opportunistic pathogen causing lethal airways infections in immunocompromised and cystic fibrosis patients, suggesting that preventing LecA binding to natural saccharides might provide new opportunities for treatment. Here 8-fold (G3) and 16-fold (G4) galactosylated analogs of GalAG2, a tetravalent G2 glycopeptide dendrimer LecA ligand and P. aeruginosa biofilm inhibitor, were obtained by convergent chloroacetyl thioether (ClAc) ligation between 4-fold or 8-fold chloroacetylated dendrimer cores and digalactosylated dendritic arms. Hemagglutination inhibition, isothermal titration calorimetry and biofilm inhibition assays showed that G3 dendrimers bind LecA slightly better than their parent G2 dendrimers and induce complete biofilm inhibition and dispersal of P. aeruginosa biofilms, while G4 dendrimers show reduced binding and no biofilm inhibition. A binding model accounting for the observed saturation of glycopeptide dendrimer galactosyl groups and LecA binding sites is proposed based on the crystal structure of a G3 dendrimer LecA complex.