80 resultados para Biodiversity, Forest restoration, Species richness, Ecosystem function
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
* Hundreds of experiments have now manipulated species richness (SR) of various groups of organisms and examined how this aspect of biological diversity influences ecosystem functioning. Ecologists have recently expanded this field to look at whether phylogenetic diversity (PD) among species, often quantified as the sum of branch lengths on a molecular phylogeny leading to all species in a community, also predicts ecological function. Some have hypothesized that phylogenetic divergence should be a superior predictor of ecological function than SR because evolutionary relatedness represents the degree of ecological and functional differentiation among species. But studies to date have provided mixed support for this hypothesis. * Here, we reanalyse data from 16 experiments that have manipulated plant SR in grassland ecosystems and examined the impact on above-ground biomass production over multiple time points. Using a new molecular phylogeny of the plant species used in these experiments, we quantified how the PD of plants impacts average community biomass production as well as the stability of community biomass production through time. * Using four complementary analyses, we show that, after statistically controlling for variation in SR, PD (the sum of branches in a molecular phylogenetic tree connecting all species in a community) is neither related to mean community biomass nor to the temporal stability of biomass. These results run counter to past claims. However, after controlling for SR, PD was positively related to variation in community biomass over time due to an increase in the variances of individual species, but this relationship was not strong enough to influence community stability. * In contrast to the non-significant relationships between PD, biomass and stability, our analyses show that SR per se tends to increase the mean biomass production of plant communities, after controlling for PD. The relationship between SR and temporal variation in community biomass was either positive, non-significant or negative depending on which analysis was used. However, the increases in community biomass with SR, independently of PD, always led to increased stability. These results suggest that PD is no better as a predictor of ecosystem functioning than SR. * Synthesis. Our study on grasslands offers a cautionary tale when trying to relate PD to ecosystem functioning suggesting that there may be ecologically important trait and functional variation among species that is not explained by phylogenetic relatedness. Our results fail to support the hypothesis that the conservation of evolutionarily distinct species would be more effective than the conservation of SR as a way to maintain productive and stable communities under changing environmental conditions.
Resumo:
It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16–32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.
Resumo:
Plant species richness of permanent grasslands has often been found to be significantly associated with productivity. Concentrations of nutrients in biomass can give further insight into these productivity- plant species richness relationships, e.g. by reflecting land use or soil characteristics. However, the consistency of such relationships across different regions has rarely been taken into account, which might significantly compromise our potential for generalization. We recorded plant species richness and measured above-ground biomass and concentrations of nutrients in biomass in 295 grasslands in three regions in Germany that differ in soil and climatic conditions. Structural equation modelling revealed that nutrient concentrations were mostly indirectly associated with plant species richness via biomass production. However, negative associations between the concentrations of different nutrients and biomass and plant species richness differed considerably among regions. While in two regions, more than 40% of the variation in plant species richness could be attributed to variation in biomass, K, P, and to some degree also N concentrations, in the third region only 15% of the variation could be explained in this way. Generally, highest plant species richness was recorded in grasslands where N and P were co-limiting plant growth, in contrast to N or K (co-) limitation. But again, this pattern was not recorded in the third region. While for two regions land-use intensity and especially the application of fertilizers are suggested to be the main drivers causing the observed negative associations with productivity, in the third region the little variance accounted for, low species richness and weak relationships implied that former intensive grassland management, ongoing mineralization of peat and fluctuating water levels in fen grasslands have overruled effects of current land-use intensity and productivity. Finally, we conclude that regional replication is of major importance for studies seeking general insights into productivity-diversity relationships.
Resumo:
Since European settlement, there has been a dramatic increase in the density, cover and distribution of woody plants in former grassland and open woodland. There is a widespread belief that shrub encroachment is synonymous with declines in ecosystem functions, and often it is associated with landscape degradation or desertification. Indeed, this decline in ecosystem functioning is considered to be driven largely by the presence of the shrubs themselves. This prevailing paradigm has been the basis for an extensive program of shrub removal, based on the view that it is necessary to reinstate the original open woodland or grassland structure from which shrublands are thought to have been derived. We review existing scientific evidence, particularly focussed on eastern Australia, to question the notion that shrub encroachment leads to declines in ecosystem functions. We then summarise this scientific evidence into two conceptual models aimed at optimising landscape management to maximise the services provided by shrub-encroached areas. The first model seeks to reconcile the apparent conflicts between the patch- and landscape-level effects of shrubs. The second model identifies the ecosystem services derived from different stages of shrub encroachment. We also examined six ecosystem services provided by shrublands (biodiversity, soil C, hydrology, nutrient provision, grass growth and soil fertility) by using published and unpublished data. We demonstrated the following: (1) shrub effects on ecosystems are strongly scale-, species- and environment-dependent and, therefore, no standardised management should be applied to every case; (2) overgrazing dampens the generally positive effect of shrubs, leading to the misleading relationship between encroachment and degradation; (3) woody encroachment per se does not hinder any of the functions or services described above, rather it enhances many of them; (4) no single shrub-encroachment state (including grasslands without shrubs) will maximise all services; rather, the provision of ecosystem goods and services by shrublands requires a mixture of different states; and (5) there has been little rigorous assessment of the long-term effectiveness of removal and no evidence that this improves land condition in most cases. Our review provides the basis for an improved, scientifically based understanding and management of shrublands, so as to balance the competing goals of providing functional habitats, maintaining soil processes and sustaining pastoral livelihoods.
Resumo:
Most existing studies addressing the effects of invasive species on biodiversity focus on species richness ignoring better indicators of biodiversity and better predictors of ecosystem functioning such as the diversity of evolutionary histories (phylodiversity). Moreover, no previous study has separated the direct effect of alien plants on multiple ecosystem functions simultaneously (multifunctionality) from those indirect ones mediated by the decrease on biodiversity caused by alien plants. We aimed to analyze direct and indirect effects, mediated or not by its effect on biodiversity, of the invasive tree Ailanthus altissima on ecosystem multifunctionality of riparian habitats under Mediterranean climate. We measured vegetation attributes (species richness and phylodiversity) and several surrogates of ecosystem functioning (understory plant biomass, soil enzyme activities, available phosphorous and organic matter) in plots infested by A. altissima and in control (non-invaded) ones. We used structural equation modelling to tease apart the direct and indirect effects of A. altissima on ecosystem multifunctionality. Our results suggest that lower plant species richness, phylodiversity and multifunctionality were associated to the presence of A. altissima. When analyzing each function separately, we found that biodiversity has the opposite effect of the alien plant on all the different functions measured, therefore reducing the strength of the effect (either positive or negative) of A. altissima on them. This is one of the few existing studies addressing the effect of invasive species on phylodiversity and also studying the effect of invasive species on multiple ecosystem functions simultaneously.
Resumo:
There is a wealth of smaller-scale studies on the effects of forest management on plant diversity. However, studies comparing plant species diversity in forests with different management types and intensity, extending over different regions and forest stages, and including detailed information on site conditions are missing. We studied vascular plants on 1500 20 m × 20 m forest plots in three regions of Germany (Schwäbische Alb, Hainich-Dün, Schorfheide-Chorin). In all regions, our study plots comprised different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests, which resulted from clear cutting or shelterwood logging), various stand ages, site conditions, and levels of management-related disturbances. We analyzed how overall richness and richness of different plant functional groups (trees, shrubs, herbs, herbaceous species typically growing in forests and herbaceous light-demanding species) responded to the different management types. On average, plant species richness was 13% higher in age-class than in unmanaged forests, and did not differ between deciduous age-class and selection forests. In age-class forests of the Schwäbische Alb and Hainich-Dün, coniferous stands had higher species richness than deciduous stands. Among age-class forests, older stands with large quantities of standing biomass were slightly poorer in shrub and light-demanding herb species than younger stands. Among deciduous forests, the richness of herbaceous forest species was generally lower in unmanaged than in managed forests, and it was even 20% lower in unmanaged than in selection forests in Hainich-Dün. Overall, these findings show that disturbances by management generally increase plant species richness. This suggests that total plant species richness is not suited as an indicator for the conservation status of forests, but rather indicates disturbances.
Resumo:
The search for predictions of species diversity across environmental gradients has challenged ecologists for decades. The humped-back model (HBM) suggests that plant diversity peaks at intermediate productivity; at low productivity few species can tolerate the environmental stresses, and at high productivity a few highly competitive species dominate. Over time the HBM has become increasingly controversial, and recent studies claim to have refuted it. Here, by using data from coordinated surveys conducted throughout grasslands worldwide and comprising a wide range of site productivities, we provide evidence in support of the HBM pattern at both global and regional extents. The relationships described here provide a foundation for further research into the local, landscape, and historical factors that maintain biodiversity.
Resumo:
Intransitive competition networks, those in which there is no single best competitor, may ensure species coexistence. However, their frequency and importance in maintaining diversity in real-world ecosystems remain unclear. We used two large data sets from drylands and agricultural grasslands to assess: (1) the generality of intransitive competition, (2) intransitivity–richness relationships and (3) effects of two major drivers of biodiversity loss (aridity and land-use intensification) on intransitivity and species richness. Intransitive competition occurred in > 65% of sites and was associated with higher species richness. Intransitivity increased with aridity, partly buffering its negative effects on diversity, but was decreased by intensive land use, enhancing its negative effects on diversity. These contrasting responses likely arise because intransitivity is promoted by temporal heterogeneity, which is enhanced by aridity but may decline with land-use intensity. We show that intransitivity is widespread in nature and increases diversity, but it can be lost with environmental homogenisation.
Reviving extinct Mediterranean forest communities may improve ecosystem potential in a warmer future
Resumo:
The Mediterranean Basin is the region of Europe most vulnerable to negative climate-change impacts, including forest decline, increased wildfire, and biodiversity loss. Because humans have affected Mediterranean ecosystems for millennia, it is unclear whether the region's native ecosystems were more resilient to climate change than current ecosystems, and whether they would provide sustainable management options if restored. We simulated vegetation with the LandClim model, using present-day climate as well as future climate-change scenarios, in three representative areas that encompass a broad range of Mediterranean conditions and vegetation types. Sedimentary pollen records that document now-extinct forests help to validate the simulations. Forests modeled under present climate closely resemble the extinct forests when human disturbance is limited; under future scenarios, characterized by increased temperatures and decreased precipitation, extinct forests are projected to re-emerge. When combined with modeling, paleoecological evidence reveals the potential of native vegetation to re-establish under current and future climate conditions, and provides a template for novel management strategies to maintain forest productivity and biodiversity in a warmer and drier future.
Resumo:
Ancient lakes are often unusually species rich, mostly as a result of radiation and species-flock formation having taken place in only one or a few of many taxa present. Understanding why some taxa radiate and others do not is at the heart of understanding biodiversity. In this chapter I discuss possible explanations for disproportionally large species numbers in some cichlid fish lineages in East African Great Lakes: the halochromine cichlid fishes in Lakes Victoria and Malawi. I show that speciation rates in this group are higher than in any other lacustrine fish radiation. Against this background, I review hypotheses put forward to explain diversity in cichlid species flocks. The evolution of species diversity requires three processes: speciation, ecological radiation and anatomical diversification, and it is wrong to consider hypotheses that are relevant to different processes as alternatives to each other. The African cichlid species flocks show unusually high ecological species packing in several phylogenetic groups and unusually high speciation rates in haplochromines. Therefore, it maybe concluded that at least two evolutionary models are required to explain the difference between cichlid diversity and other fish diversity in East African Lakes: one for speciation in haplochromines and one for coexistence. Subsequently I review work on speciation in haplochromines, and in particular studies aimed at testing the hypothesis of speciation by sexual selection. Haplochromines have a polygynous mating system, conducive to sexual selection, but other polygynous cichlids are not particularly species rich. This suggests that more than just strong sexual selection is required to explain haplochromine species richness. Recent palaeoecological evidence undermines the previously popular hypotheses that explained the species richness of Lake Victoria in terms of speciation under varying natural or sexual selection regimes in satellite lakes or in isolated lake basins. I summarize experimental and comparative studies, which provide evidence for two mechanisms of sympatric speciation by disruptive sexual selection on polymorphic coloration. Such modes of speciation may explain (i) the high speciation rates in colour polymorphic lineages of haplochromine cichlids under conditions where colour variation is visible in clear water, and (ii) in combination with factors that affect population survival, the unusual species richness in haplochromine species flocks. I argue that sexual selection, if disruptive, can accelerate the pace of adaptive radiation because the resultant genetic population fragmentation allows a much increased rate of differential response to disruptive natural selection. Hence, the ecological pattern of diversity resembles that produced by disruptive natural selection, with the difference that disruptive sexual selection continues to cause (gross) speciation even after niche space is saturated. This may explain the unusually high numbers of very closely related and ecologically similar species in haplochromine species flocks. The role of disruptive sexual selection is twofold: it not only causes speciation, but also maintains reproductive isolation in sympatry between species that have evolved in sympatry or allopatry. Therefore, the maintenance of diversity in species flocks that originated through sexual selection depends on the persistence of the selection regime within the environmental signal space under which that diversity evolved.
Resumo:
Lichens are very sensitive to habitat changes and their species richness is likely to decline under intensive land use. Currently, a comprehensive study analyzing lichen species richness in relation to land-use types, extending over different regions and including information on habitat variables, is missing for temperate grasslands. In three German regions we studied lichen species richness in 490 plots of 16 m2 representing different land-use types, livestock types, and habitat variables. Due to the absence of low-intensity pastures and substrates such as woody plants, deadwood and stones, there were no lichens in the 78 plots in Schorfheide-Chorin. In the two other regions, the richness of lichen species was 45 % higher in pastures than in meadows, and 77 % higher than in mown pastures, respectively. Among the pastures, the richness of all lichen species was on average 10 times higher in sheep-grazed pastures than in the ones grazed by cattle or horses. On average, the richness of all lichen species increased by 3.3 species per additional microhabitat. Furthermore, the richness of corticolous lichens increased by 1.2 species with 10 % higher cover of woody plants, lignicolous lichen species richness increased by 4.8 species with 1 % higher cover of deadwood, and saxicolous lichen species richness increased by 1.0 species with 1 % higher cover of stones. Our findings highlight the importance of low-intensity land use for lichen conservation. In particular, the degradation of grasslands rich in microhabitats and the destruction of lichen substrates by intensification, and conversion of unfertilized pastures formerly grazed at low intensity to meadows should be avoided to maintain lichen diversity.