3 resultados para Bio-CTD 19
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
INTRODUCTION: This investigation was designed to compare the histomorphometric results from sinus floor augmentation with anorganic bovine bone (ABB) and a new biphasic calcium phosphate, Straumann Bone Ceramic (BCP). MATERIALS AND METHODS: Forty-eight maxillary sinuses were treated in 37 patients. Residual bone width was > or =6 mm and height was > or =3 mm and <8 mm. Lateral sinus augmentation was used, with grafting using either ABB (control group; 23 sinuses) or BCP (test group; 25 sinuses); sites were randomly assigned to the control or test groups. After 180-240 days of healing, implant sites were created and biopsies taken for histological and histomorphometric analyses. The parameters assessed were (1) area fraction of new bone, soft tissue, and graft substitute material in the grafted region; (2) area fraction of bone and soft tissue components in the residual alveolar ridge compartment; and (3) the percentage of surface contact between the graft substitute material and new bone. RESULTS: Measurable biopsies were available from 56% of the test and 81.8% of the control sites. Histology showed close contact between new bone and graft particles for both groups, with no significant differences in the amount of mineralized bone (21.6+/-10.0% for BCP vs. 19.8+/-7.9% for ABB; P=0.53) in the biopsy treatment compartment of test and control site. The bone-to-graft contact was found to be significantly greater for ABB (48.2+/-12.9% vs. 34.0+/-14.0% for BCP). Significantly less remaining percentage of graft substitute material was found in the BCP group (26.6+/-5.2% vs. 37.7+/-8.5% for ABB; P=0.001), with more soft tissue components (46.4+/-7.7% vs. 40.4+/-7.3% for ABB; P=0.07). However, the amount of soft tissue components for both groups was found not to be greater than in the residual alveolar ridge. DISCUSSION: Both ABB and BCP produced similar amounts of newly formed bone, with similar histologic appearance, indicating that both materials are suitable for sinus augmentation for the placement of dental implants. The potential clinical relevance of more soft tissue components and different resorption characteristics of BCP requires further investigation.
Resumo:
OBJECTIVES: To compare the histological features of bone filled with Bio-Oss, Ostim-Paste or PerioGlas placed in defects in the rabbit tibiae by evaluating bone tissue composition and the integration of titanium implants placed in the grafted bone. MATERIAL AND METHODS: Two cylindrical bone defects, about 4 mm in diameter and 6 mm in depth, were created in the tibiae of 10 rabbits. The defects were filled with either Bio-Oss, PerioGlas, Ostim-Paste or left untreated, and covered with a collagen membrane. Six weeks later, one titanium sandblasted and acid-etched (SLA) implant was inserted at the centre of each previously created defect. The animals were sacrificed after 6 weeks of healing. RESULTS: Implants placed in bone previously grafted with Bio-Oss, PerioGlas or Ostim-Paste obtained a larger extent of osseointegration, although not statistically significant, than implants placed in non-grafted bone. The three grafting materials seemed to perform in a similar way concerning their contribution towards implant osseointegration. All grafting materials appeared to be osteoconductive, thus leading to the formation of bridges of mineralized bone extending from the cortical plate towards the implants surface through the graft scaffold. CONCLUSIONS: Grafting with the above-mentioned biomaterials did not add any advantage to the osseointegration of titanium SLA implants in a self-contained defect.