7 resultados para Biking
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We evaluated 4 men who had benign paroxysmal positional vertigo (BPPV) that occured several hours after intensive mountain biking but without head trauma. The positional maneuvers in the planes of the posterior and horizontal canals elicited BPPV, as well as transitory nystagmus. This was attributed to both the posterior and horizontal semicircular canals (SCCs) on the left side in 1 patient, in these 2 SCCs on the right side in another patient, and to the right posterior SCC in the other 2 patients. The symptoms disappeared after physiotherapeutic maneuvers in 2 patients and spontaneously in the other 2 patients. Cross-country or downhill mountain biking generates frequent vibratory impacts, which are only partially filtered through the suspension fork and the upper parts of the body. Biomechanically, during a moderate jump, before landing, the head is subjected to an acceleration close to negative 1 g, and during impact it is subjected to an upward acceleration of more than 2g. Repeated acceleration-deceleration events during intensive off-road biking might generate displacement and/or dislocation of otoconia from the otolithic organs, inducing the typical symptoms of BPPV. This new cause of posttraumatic BPPV should be considered as an injury of minor severity attributed to the practice of mountain biking.
Resumo:
Vibrations, Posture, and the Stabilization of Gaze: An Experimental Study on Impedance Control R. KREDEL, A. GRIMM & E.-J. HOSSNER University of Bern, Switzerland Introduction Franklin and Wolpert (2011) identify impedance control, i.e., the competence to resist changes in position, velocity or acceleration caused by environmental disturbances, as one of five computational mechanisms which allow for skilled and fluent sen-sorimotor behavior. Accordingly, impedance control is of particular interest in situa-tions in which the motor task exhibits unpredictable components as it is the case in downhill biking or downhill skiing. In an experimental study, the question is asked whether impedance control, beyond its benefits for motor control, also helps to stabi-lize gaze what, in turn, may be essential for maintaining other control mechanisms (e.g., the internal modeling of future states) in an optimal range. Method In a 3x2x4 within-subject ANOVA design, 72 participants conducted three tests on visual acuity and contrast (Landolt / Grating and Vernier) in two different postures (standing vs. squat) on a platform vibrating at four different frequencies (ZEPTOR; 0 Hz, 4 Hz, 8 Hz, 12 Hz; no random noise; constant amplitude) in a counterbalanced or-der with 1-minute breaks in-between. In addition, perceived exertion (Borg) was rated by participants after each condition. Results For Landolt and Grating, significant main effects for posture and frequency are re-vealed, representing lower acuity/contrast thresholds for standing and for higher fre-quencies in general, as well as a significant interaction (p < .05), standing for in-creasing posture differences with increasing frequencies. Overall, performance could be maintained at the 0 Hz/standing level up to a frequency of 8 Hz, if bending of the knees was allowed. The fact that this result is not only due to exertion is proved by the Borg ratings showing significant main effects only, i.e., higher exertion scores for standing and for higher frequencies, but no significant interaction (p > .40). The same pattern, although not significant, is revealed for the Vernier test. Discussion Apparently, postures improving impedance control not only turn out to help to resist disturbances but also assist in stabilizing gaze in spite of these perturbations. Con-sequently, studying the interaction of these control mechanisms in complex unpre-dictable environments seems to be a fruitful field of research for the future. References Franklin, D. W., & Wolpert, D. M. (2011). Computational mechanisms of sensorimotor control. Neuron, 72, 425-442.
Resumo:
Introduction: According to the theoretical model of Cranach, Ochsenbein, and Valach (1986) understanding group actions needs consideration of aspects at both the group level and the level of individual members. For example individual action units constituting group actions are motivated at the individual level while potentially being affected by characteristics of the group. Theoretically, group efficacy beliefs could be a part of this motivational process as they are an individual’s cognitive contents about group-level abilities to perform well in a specific task. Positive relations between group level efficacy-beliefs and group performance have been reported and Bandura and Locke (2003) argue that this relationship is being mediated by motivational processes and goal setting. The aims of this study were a) to examine the effects of group characteristics on individual performance motivation and b) to test if those are mediated by individual group efficacy beliefs. Methods: Forty-seven students (M=22.83 years, SD=2.83, 34% women) of the university of Berne participated in this scenario based experiment. Data were collected on two collection points. Subjects were provided information about fictive team members with whom they had to perform a group triathlon. Three values (low, medium, high) of the other team members’ abilities to perform in their parts of the triathlon (swimming and biking respectively) were combined in a 3x3 full factorial design (Anderson, 1982) yielding nine groups. Subjects were asked how confident they were that the teams would perform well in the task (individual group efficacy beliefs), and to provide information about their motivation to perform at their best in the respective group contexts (performance motivation). Multilevel modeling (Mplus) was used to estimate the effects of the factors swim and bike, and the context-varying covariate individual group efficacy beliefs on performance motivation. Further analyses were undertaken to test if the effects of group contexts on performance motivation are mediated by individual group efficacy beliefs. Results: Significant effects were reported for both the group characteristics (βswim = 7.86; βbike = 8.57; both p < .001) and the individual group efficacy beliefs (βigeb; .40, p < .001) on performance motivation. The subsequent mediation model indicated that the effects of group characteristics on performance motivation were partly mediated by the individual group efficacy beliefs of the subjects with significant mediation effects for both factors swim and bike. Discussion/Conclusion: The results of the study provide further support for the motivational character of efficacy beliefs and point out a mechanism by which team characteristics influence performance relevant factors at the level of individual team members. The study indicates that high team abilities lead to augmented performance motivation, adding a psychological advantage to teams already high on task relevant abilities. Future investigations will be aiming at possibilities to keep individual performance motivation high in groups with low task relevant abilities. One possibility could be the formulation of individual task goals. References: Anderson, N. H. (1982). Methods of information integration theory. New York: Academic Press. Bandura, A. & Locke, E. A. (2003). Negative self-efficacy and goal effects revisited. Journal of Applied Psychology, 88, 87-99. Cranach, M. von, Ochsenbein, G. & Valach, L. (1986). The group as a self-active system: Outline of a theory of group action. European Journal of Social Psychology, 16, 193-229.
Resumo:
Introduction Research has shown that individuals infer their group-efficacy beliefs from the groups’ abilities to perform in specific tasks. Group abilities also seem to affect team members’ performance motivation adding a psychological advantage to teams already high on task relevant abilities. In a recent study we found the effect of group abilities on individual performance motivation to be partially mediated by the team members’ individual group-efficacy beliefs which is an example of how attributes on a group-level can be affecting individual-level parameters. Objectives The study aimed at testing the possibility to reduce the direct and mediated effects of low group abilities on performance motivation by augmenting the visibility of individual contributions to group performances via the inclusion of a separate ranking on individual performances. Method Forty-seven students (M=22.83 years, SD=2.83, 34% women) of the University of Bern participated in the study. At three collection points (t1-3) subjects were provided information about fictive team members with whom they had to imagine performing a group triathlon. Three values (low, medium, high) of the other team members’ abilities to perform in their parts of the triathlon (swimming and biking) were combined in a 3x3 full factorial design yielding nine groups with different ability profiles. At t1 subjects were asked to rate their confidence that the teams would perform well in the triathlon task, at t2 and t3 subjects were asked how motivated they were to perform at their best in the respective groups. At t3 the presence of an individual performance ranking was mentioned in the cover story. Mixed linear models (SPSS) and structural equation models for complex survey data (Mplus) were specified to estimate the effects of the individual performance rankings on the relationship between group-efficacy beliefs and performance motivation. Results A significant interaction effect for individual group-efficacy beliefs and the triathlon condition on performance motivation was found; the effect of group-efficacy beliefs on performance motivation being smaller with individual performance rankings available. The partial mediation of group attributes on performance motivation by group-efficacy beliefs disappeared with the announcement of individual performance rankings. Conclusion In teams low in task relevant abilities the disadvantageous effect of group-efficacy beliefs on performance motivation might be reduced by providing means of evaluating individual performances apart from a group’s overall performance. While it is believed that a common group goal is a core criterion for a well performing sport group future studies should also aim at the possible benefit of individualized goal setting in groups.
Resumo:
Introduction Research has shown that individuals infer their group-efficacy beliefs from the groups’ abilities to perform in specific tasks. Group abilities also seem to affect team members’ performance motivation adding a psychological advantage to teams already high on task relevant abilities. In a recent study we found the effect of group abilities on individual performance motivation to be partially mediated by the team members’ individual group-efficacy beliefs which is an example of how attributes on a group-level can be affecting individual-level parameters. Objectives The study aimed at testing the possibility to reduce the direct and mediated effects of low group abilities on performance motivation by augmenting the visibility of individual contributions to group performances via the inclusion of a separate ranking on individual performances. Method Forty-seven students (M=22.83 years, SD=2.83, 34% women) of the University of Bern participated in the study. At three collection points (t1-3) subjects were provided information about fictive team members with whom they had to imagine performing a group triathlon. Three values (low, medium, high) of the other team members’ abilities to perform in their parts of the triathlon (swimming and biking) were combined in a 3x3 full factorial design yielding nine groups with different ability profiles. At t1 subjects were asked to rate their confidence that the teams would perform well in the triathlon task, at t2 and t3 subjects were asked how motivated they were to perform at their best in the respective groups. At t3 the presence of an individual performance ranking was mentioned in the cover story. Mixed linear models (SPSS) and structural equation models for complex survey data (Mplus) were specified to estimate the effects of the individual performance rankings on the relationship between group-efficacy beliefs and performance motivation. Results A significant interaction effect for individual group-efficacy beliefs and the triathlon condition on performance motivation was found; the effect of group-efficacy beliefs on performance motivation being smaller with individual performance rankings available. The partial mediation of group attributes on performance motivation by group-efficacy beliefs disappeared with the announcement of individual performance rankings. Conclusion In teams low in task relevant abilities the disadvantageous effect of group-efficacy beliefs on performance motivation might be reduced by providing means of evaluating individual performances apart from a group’s overall performance. While it is believed that a common group goal is a core criterion for a well performing sport group future studies should also aim at the possible benefit of individualized goal setting in groups.