5 resultados para Beta-globin

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have used three beta-thalassemic mutations, IVS2-654, -705 and -745, that create aberrant 5' splice sites (5' ss) and activate a common cryptic 3' ss further upstream in intron 2 of the human beta-globin gene to optimize a generally applicable exon-skipping strategy using antisense derivatives of U7 small nuclear RNA (snRNA). Introducing a modified U7 snRNA gene carrying an antisense sequence against the cryptic 3' ss into cultured cells expressing the mutant beta-globin genes, restored correct beta-globin mRNA splicing for all three mutations, but the efficiency was much weaker for IVS2-654 than for the other mutations. The length of antisense sequence influenced the efficiency with an optimum of approximately 24 nucleotides. Combining two antisense sequences directed against different target sites in intron 2, either on separate antisense RNAs or, even better, on a single U7 snRNA, significantly enhanced the efficiency of splicing correction. One double-target U7 RNA was expressed on stable transformation resulting in permanent and efficient suppression of the IVS2-654 mutation and production of beta-globin. These results suggest that forcing the aberrant exon into a looped secondary structure may strongly promote its exclusion from the mRNA and that this approach may be used generally to induce exon skipping.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many diseases affect pre-mRNA splicing, and alternative splicing is a major source of proteome diversity and an important mechanism for modulating gene expression. The ability to regulate a specific splicing event is therefore desirable; for example, to understand splicing-associated pathologies. We have developed methods based on modified U7 snRNAs, which allow us to induce efficient skipping or inclusion of selected exons. Here, we have adapted these U7 tools to a regulatable system that relies on a doxycycline-sensitive version of the Kruppel-associated box (KRAB)/KAP1 transcriptional silencing. Co-transduction of target cells with two lentiviral vectors, one carrying the KRAB protein and the other the regulatable U7 cassette, allows a tight regulation of the modified U7 snRNA. No leakage is observed in the repressed state, whereas full induction can be obtained with doxycycline in ng ml(-1) concentrations. Only a few days are necessary for a full switch, and the induction/repression can be repeated over several cycles without noticeable loss of control. Importantly, the U7 expression correlates with splicing correction, as shown for the skipping of an aberrant beta-globin exon created by a thalassaemic mutation and the promotion of exon 7 inclusion in the human SMN2 gene, an important therapeutic target for spinal muscular atrophy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tricyclo (tc)-DNA belongs to the class of conformationally constrained DNA analogs that show enhanced binding properties to DNA and RNA. We prepared tc-oligonucleotides up to 17 nt in length, and evaluated their binding efficiency and selectivity towards complementary RNA, their biological stability in serum, their RNase H inducing potential and their antisense activity in a cellular assay. Relative to RNA or 2'-O-Me-phosphorothioate (PS)-RNA, fully modified tc-oligodeoxynucleotides, 10-17 nt in length, show enhanced selectivity and enhanced thermal stability by approximately 1 degrees C/modification in binding to RNA targets. Tricyclodeoxyoligonucleotides are completely stable in heat-deactivated fetal calf serum at 37 degree C. Moreover, tc-DNA-RNA duplexes are not substrates for RNase H. To test for antisense effects in vivo, we used HeLa cell lines stably expressing the human beta-globin gene with two different point mutations in the second intron. These mutations lead to the inclusion of an aberrant exon in beta-globin mRNA. Lipofectamine-mediated delivery of a 17mer tc-oligodeoxynucleotide complementary to the 3'-cryptic splice site results in correction of aberrant splicing already at nanomolar concentrations with up to 100-fold enhanced efficiency relative to a 2'-O-Me-PS-RNA oligonucleotide of the same length and sequence. In contrast to 2'-O-Me-PS-RNA, tc-DNA shows antisense activity even in the absence of lipofectamine, albeit only at much higher oligonucleotide concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of HeLa cell lines which stably express beta-globin pre-mRNAs carrying point mutations at nt 654, 705, or 745 of intron 2 has been developed. The mutations generate aberrant 5' splice sites and activate a common 3' cryptic splice site upstream leading to aberrantly spliced beta-globin mRNA. Antisense oligonucleotides, which in vivo blocked aberrant splice sites and restored correct splicing of the pre-mRNA, revealed major differences in the sensitivity of these sites to antisense probes. Although the targeted pre-mRNAs differed only by single point mutations, the effective concentrations of the oligonucleotides required for correction of splicing varied up to 750-fold. The differences among the aberrant 5' splice sites affected sensitivity of both the 5' and 3' splice sites; in particular, sensitivity of both splice sites was severely reduced by modification of the aberrant 5' splice sites to the consensus sequence. These results suggest large differences in splicing of very similar pre-mRNAs in vivo. They also indicate that antisense oligonucleotides may provide useful tools for studying the interactions of splicing machinery with pre-mRNA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In several forms of beta-thalassemia, mutations in the second intron of the beta-globin gene create aberrant 5' splice sites and activate a common cryptic 3' splice site upstream. As a result, the thalassemic beta-globin pre-mRNAs are spliced almost exclusively via the aberrant splice sites leading to a deficiency of correctly spliced beta-globin mRNA and, consequently, beta-globin. We have designed a series of vectors that express modified U7 snRNAs containing sequences antisense to either the aberrant 5' or 3' splice sites in the IVS2-705 thalassemic pre-mRNA. Transient expression of modified U7 snRNAs in a HeLa cell line stably expressing the IVS2-705 beta-globin gene restored up to 65% of correct splicing in a sequence-specific and dose-dependent manner. Cell lines that stably coexpressed IVS2-705 pre-mRNA and appropriately modified U7 snRNA exhibited up to 55% of permanent restoration of correct splicing and expression of full-length beta-globin protein. This novel approach provides a potential alternative to gene replacement therapies.