14 resultados para Benzo[a]pireno

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study compared for seabream, Sparus aurata exposed to benzo(a)pyrene-B(a)P-, the response of molecular cytochrome P450 1A (CYP1A) and cellular histopathology biomarkers. Male gilthead seabream, Sparus aurata specimens were exposed for 20 days via water to a series of high B(a)P concentrations. CYP1A was assessed by measuring enzymatic activity (EROD) and CYP1A protein content, and cellular responses were evaluated by routine histopathological methods. In addition, biliary metabolites were measured in order to verify that B(a)P was absorbed and metabolised. Histological lesions, both in liver and gills, increased in parallel to B(a)P concentrations, with the majority of changes representing rather non-specific alterations. Hepatic EROD and CYP1A proteins data showed a concentration-dependent induction, while in the gills, EROD activity but not CYP1A proteins showed a non-monotonous dose response, with a maximum induction level at 200 microg B(a)P.L-1 and decreasing levels thereafter. The findings provide evidence that short-term, high dose exposure of fish can result in significant uptake and metabolism of the lipophilic B(a)P, and in pronounced pathological damage of absorptive epithelia and internal organs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study compares basal and induced expression of cytochrome P4501A-CYP1A in the brain of gilthead seabream, Sparus aurata. Larval or adult seabream were exposed to benzo(a)pyrene -B(a)P- and the CYP1A response was assessed by analyzing CYP1A mRNA (RT-PCR), CYP1A protein (expression levels: ELISA, western blotting; cellular localization: immunohistochemistry), and CYP1A catalytic activity (7-ethoxyresorufin-O-deethylase-EROD). In the brain of adult S. aurata, CYP1A immunostaining was generally detected in the vasculature. It was present in the neuronal fibers and glial cells of the olfactory bulbs and the ventral telencephalon. ELISA and RT-PCR analyses confirmed CYP1A expression in the brains of non-exposed seabream. B(a)P exposure led to increased CYP1A staining mainly in neuronal fibers and glial cells of the olfactory bulbs, but also in the vascular endothelia. EROD activity, however, could not be detected in the brain of adult seabream, neither in control nor in exposed fish. In the developing brain of S. aurata larvae, immunohistochemical staining detected CYP1A protein exclusively in endothelia of the olfactory placode and in retina. Staining intensity of CYP1A slightly increases with larval development, especially in vascular brain endothelia. Exposing the larvae to 0.3 or 0.5 microg B(a)P/L from hatching until 15 days post hatching (dph) did not result in enhanced CYP1A immunostaining in the brain. In samples of whole seabream larvae, both from controls and BaP treatments, neither CYP1A mRNA, protein nor catalytic activity were detectable. The results demonstrate that CYP1A is expressed already and inducible in the larval brain, but that the regional and cellular expression differs partly between larval and adult brain. This may have implications for the toxicity of CYP1A-inducing xenobiotics on early and mature life stages of seabream.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the developmental toxicity of the polycyclic aromatic hydrocarbons (PAHs) 11H-benzo(b)fluorene (BBF) and 4-azapyrene (AP) in comparison to the known teratogen retene. Developmental toxicity assays were performed in zebrafish embryos exposed for 120 h. BBF and retene induced a similar dioxin-like phenotype, whereas AP showed distinct effects, particularly craniofacial malformations. Microarray analysis revealed that for BBF and retene, drug metabolism pathways were induced, which were confirmed by subsequent studies of cyp1a gene expression. For AP, microarray analysis revealed the regulation of genes involved in retinoid metabolism and hematological functions. Studies with a panel of CALUX((R)) bioassays to screen for endocrine disrupting activity of the compounds also revealed novel antagonistic effects of BBF and retene on androgen and progesterone receptors. Classification analysis revealed distinct gene expression profiles for both individual and combined PAH exposure. This study highlights the potential health risk of non priority PAHs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycyclic aromatic hydrocarbons (PAHs) are immunotoxicants in fish. In mammals, phase I metabolites are believed to be critically involved in the immunotoxicity of PAHs. This mechanism has been suggested for fish as well. The present study investigates the capacity of immune organs (head kidney, spleen) of rainbow trout, Oncorhynchus mykiss, to metabolize the prototypic PAH, benzo[a]pyrene (BaP). To this end, we analyzed 1) the induction of enzymatic capacity measured as 7-ethoxyresorufin-O-deethylase (EROD) activity in immune organs compared with liver, 2) the organ profiles of BaP metabolites generated in vivo, and 3) rates of microsomal BaP metabolite production in vitro. All measurements were done for control fish and for fish treated with an intraperitoneal injection of 15 mg BaP/kg body weight. In exposed trout, the liver, head kidney, and spleen contained similar levels of BaP, whereas EROD induction differed significantly between the organs, with liver showing the highest induction factor (132.8×), followed by head kidney (38.4×) and spleen (1.4×). Likewise, rates of microsomal metabolite formation experienced the highest induction in the liver of BaP-exposed trout, followed by the head kidney and spleen. Microsomes from control fish displayed tissue-specific differences in metabolite production. In contrast, in BaP-exposed trout, microsomes of all organs produced the potentially immunotoxic BaP-7,8-dihydrodiol as the main metabolite. The findings from this study show that PAHs, like BaP, are distributed into immune organs of fish and provide the first evidence that immune organs possess inducible PAH metabolism leading to in situ production of potentially immunotoxic PAH metabolites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existence of a resident population of intrahepatic immune cells (IHICs) is well documented for mammalian vertebrates, however, it is uncertain whether IHICs are present in the liver of teleostean fish. In the present study we investigated whether trout liver contains an IHIC population, and if so, what the relative cellular composition of this population is. The results provide clear evidence for the existence of an IHIC population in trout liver, which constitutes 15-29% of the non-hepatocytes in the liver, and with a cellular composition different to that of the blood leukocyte population. We also analyzed the response of IHICs to a non-infectious liver challenge with the hepatotoxic and immunotoxic chemical, benzo[a]pyrene (BaP). Juvenile trout were treated with BaP (25 or 100mg/kgbw) at levels sufficient to induce the molecular pathway of BaP metabolism while not causing pathological and inflammatory liver changes. The IHIC population responded to the BaP treatments in a way that differed from the responses of the leukocyte populations in trout blood and spleen, suggesting that IHICs are an independently regulated immune cell population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change and anthropogenic pollution are of increasing concern in remote areas such as Antarctica. The evolutionary adaptation of Antarctic notothenioid fish to the cold and stable Southern Ocean led to a low plasticity of their physiological functions, what may limit their capacity to deal with altered temperature regimes and pollution in the Antarctic environment. Using a biochemical approach, we aimed to assess the hepatic biotransformation capacities of Antarctic fish species by determining (i) the activities of ethoxyresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST), and (ii) the metabolic clearance of benzo(a)pyrene by hepatic S9 supernatants. In addition, we determined the thermal sensitivity of the xenobiotic biotransformation enzymes. We investigated the xenobiotic metabolism of the red-blooded Gobionotothen gibberifrons and Notothenia rossii, the hemoglobin-less Chaenocephalus aceratus and Champsocephalus gunnari, and the rainbow trout Oncorhynchus mykiss as a reference. Our results revealed similar metabolic enzyme activities and metabolic clearance rates between red- and white-blooded Antarctic fish, but significantly lower rates in comparison to rainbow trout. Therefore, bioaccumulation factors for metabolizable lipophilic contaminants may be higher in Antarctic than in temperate fish. Likewise, the thermal adaptive capacities and flexibilities of the EROD and GST activities in Antarctic fish were significantly lower than in rainbow trout. As a consequence, increasing water temperatures in the Southern Ocean will additionally compromise the already low detoxification capacities of Antarctic fish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A tetrathiafulvalene donor has been annulated to the bay region of perylenediimide through a 1H-benzo-[d]pyrrolo[1,2-a]imidazol-1-one spacer affording an extended pi-conjugated molecular dyad (TTF-PDI). To gain insight into its ground- and excited-state electronic properties, the reference compound Ph-PDI has been prepared via a direct Schiff-base condensation of N,N'-bis(1-octylnonyl) benzoperylene-1',2':3,4:9,10-hexacarboxylic-1',2'-anhydride-3,4:9,10-bis (imide) with benzene-1,2-diamine. Both the experimental and the computational (DFT) results indicate that TTF-PDI exhibits significant intramolecular electronic interactions giving rise to an efficient photoinduced charge-separation process. Free-energy calculations verify that the process from TTF to the singlet-excited state of PDI is exothermic in both polar and nonpolar solvents. Fast adiabatic electron-transfer processes of a compactly fused, pi-conjugated TTF-PDI dyad in benzonitrile, 2-methyltetrahydrofuran, anisole and toluene were observed by femtosecond transient absorption spectral measurements. The lifetimes of radical-ion pairs slightly increase with decreasing the solvent polarities, suggesting that the charge-recombination occurs in the Marcus inverted region. By utilizing the nanosecond transient absorption technique, the intermolecular electron-transfer process in a mixture of has been observed via the triplet excited PDI for the first time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to compare xenobiotic CYP1A induction in liver, gills, and excretory kidney of gilthead seabream, Sparus aurata. Fishes were exposed via water for 20 days to different concentrations of benzo(a)pyrene (B(a)P) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). CYP1A was measured at the enzyme activity level as 7-ethoxyresorufin-O-deethylase (EROD) activity, and at the protein level by means of ELISA. The liver displayed the highest absolute levels of EROD activity, both under non-exposed and exposed conditions. Organ- or inducer-related differences in the time course of CYP1A induction were moderate; however, the magnitude of the induction response varied between the organs and between B(a)P and TCDD. In the case of TCDD, liver, and kidney yielded a comparable induction response, whereas in the case of B(a)P, the kidney showed a substantially higher maximum induction factor than the liver. In the gills, the two xenobiotics resulted in similar maximum induction factors. In B(a)P-exposed seabream, EROD activities and CYP1A protein levels showed a good correlation in all three organs, whereas with TCDD as inducer the correlation was poor, what was mainly due to a decrease of EROD activities at the higher concentrations of TCDD, while CYP1A protein levels showed no concomitant decline. Overall, the study revealed both similarities and differences in the time-, concentration-, and inducer-dependent CYP1A responses of the three target organs, liver, kidney, and gills. Although, the findings of this study principally confirm the notion of the liver as the major metabolic organ in fish, they also provide evidence for substantial metabolic potential in gills and particularly in the kidney.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiolabeled antagonists of specific peptide receptors identify a higher number of receptor binding sites than agonists and may thus be preferable for in vivo tumor targeting. In this study, two novel radioiodinated 1,4-benzodiazepines, (S)-1-(3-iodophenyl)-3-(1-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)urea (9) and (R)-1-(3-iodophenyl)-3-(1-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)urea (7), were developed. They were characterized in vitro as high affinity selective antagonists at cholecystokinin types 1 and 2 (CCK(1) and CCK(2)) receptors using receptor binding, calcium mobilization, and internalization studies. Their binding to human tumor tissues was assessed with in vitro receptor autoradiography and compared with an established peptidic CCK agonist radioligand. The (125)I-labeled CCK(1) receptor-selective compound 9 often revealed a substantially higher amount of CCK(1) receptor binding sites in tumors than the agonist (125)I-CCK. Conversely, the radioiodinated CCK(2) receptor-selective compound 7 showed generally weaker tumor binding than (125)I-CCK. In conclusion, compound 9 is an excellent radioiodinated nonpeptidic antagonist ligand for direct and selective labeling of CCK(1) receptors in vitro. Moreover, it represents a suitable candidate to test antagonist binding to CCK(1) receptor-expressing tumors in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the concentrations of 28 PAHs, 15 oxygenated PAHs (OPAHs) and 11 trace metals/metalloids (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) in muscle and gut + gill tissues of demersal fishes (Drapane africana, Cynoglossus senegalensis and Pomadasys peroteti) from three locations along the coast of the Gulf of Guinea (Ghana). The concentrations of ∑ 28PAHs in muscle tissues averaged 192 ng g− 1 dw (range: 71–481 ng g− 1 dw) and were not statistically different between locations. The concentrations of ∑ 28 PAHs were higher in guts + gills than in muscles. The PAH composition pattern was dominated by low molecular weight compounds (naphthalene, alkyl-naphthalenes and phenanthrene). All fish tissues had benzo[a]pyrene concentrations lower than the EU limit for food safety. Excess cancer risk from consumption of some fish was higher than the guideline value of 1 × 10− 6. The concentrations of ∑ 15 OPAHs in fish muscles averaged 422 ng g− 1 dw (range: 28–1715 ng g− 1dw). The ∑ 15 OPAHs/∑ 16 US-EPA PAHs concentration ratio was > 1 in 68% of the fish muscles and 100% of guts + gills. The log-transformed concentrations of PAHs and OPAHs in muscles, guts + gills were significantly (p < 0.05) correlated with their octanol–water partitioning coefficients, strongly suggesting that equilibrium partitioning from water/sediment into fish tissue was the main mechanism of bioaccumulation. The trace metal concentrations in the fish tissues were in the medium range when compared to fish from other parts of the world. The concentrations of some trace metals (Cd, Cu, Fe, Mn, Zn) were higher in guts + gills than in muscle tissues. The target hazard quotients for metals were < 1 and did not indicate a danger to the local population. We conclude that the health risk arising from the consumption of the studied fish (due to their PAHs and trace metals content) is minimal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measured rates of intrinsic clearance determined using cryopreserved trout hepatocytes can be extrapolated to the whole animal as a means of improving modeled bioaccumulation predictions for fish. To date, however, the intra- and interlaboratory reliability of this procedure has not been determined. In the present study, three laboratories determined in vitro intrinsic clearance of six reference compounds (benzo[a]pyrene, 4-nonylphenol, di-tert-butyl phenol, fenthion, methoxychlor and o-terphenyl) by conducting substrate depletion experiments with cryopreserved trout hepatocytes from a single source. O-terphenyl was excluded from the final analysis due to nonfirst-order depletion kinetics and significant loss from denatured controls. For the other five compounds, intralaboratory variability (% CV) in measured in vitro intrinsic clearance values ranged from 4.1 to 30%, while interlaboratory variability ranged from 27 to 61%. Predicted bioconcentration factors based on in vitro clearance values exhibited a reduced level of interlaboratory variability (5.3-38% CV). The results of this study demonstrate that cryopreserved trout hepatocytes can be used to reliably obtain in vitro intrinsic clearance of xenobiotics, which provides support for the application of this in vitro method in a weight-of-evidence approach to chemical bioaccumulation assessment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a new cruciform donor–acceptor molecule 2,2'-((5,5'-(3,7-dicyano-2,6-bis(dihexylamino)benzo[1,2-b:4,5-b']difuran-4,8-diyl)bis(thiophene-5,2-diyl))bis (methanylylidene))dimalononitrile (BDFTM) is reported. The compound exhibits both remarkable solid-state red emission and p-type semiconducting behavior. The dual functions of BDFTM are ascribed to its unique crystal structure, in which there are no intermolecular face-to-face π–π interactions, but the molecules are associated by intermolecular CN…π and H-bonding interactions. Firstly, BDFTM exhibits aggregation-induced emission; that is, in solution, it is almost non-emissive but becomes significantly fluorescent after aggregation. The emission quantum yield and average lifetime are measured to be 0.16 and 2.02 ns, respectively. Crystalline microrods and microplates of BDFTM show typical optical waveguiding behaviors with a rather low optical loss coefficient. Moreover, microplates of BDFTM can function as planar optical microcavities which can confine the emitted photons by the reflection at the crystal edges. Thin films show an air-stable p-type semiconducting property with a hole mobility up to 0.0015 cm2V−1s−1. Notably, an OFET with a thin film of BDFTM is successfully utilized for highly sensitive and selective detection of H2S gas (down to ppb levels).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Herbivore-damaged plants release a blend of volatile organic compounds (VOCs) that differs from undamaged plants. These induced changes are known to attract the natural enemies of the herbivores and therefore are expected to be important determinants of the effectiveness of biological control in agriculture. One way of boosting this phenomenon is the application of plant strengtheners, which has been shown to enhance parasitoid attraction in maize. It is unclear whether this is also the case for other important crops. RESULTS The plant strengtheners BTH [benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester] and laminarin were applied to cotton plants, and the effects on volatile releases and the attraction of three hymenopteran parasitoids, Cotesia marginiventris, Campoletis sonorensis and Microplitis rufiventris, were studied. After treated and untreated plants were induced by real or simulated caterpillar feeding, it was found that BTH treatment increased the attraction of the parasitoids, whereas laminarin had no significant effect. BTH treatment selectively increased the release of two homoterpenes and reduced the emission of indole, the latter of which had been shown to interfere with parasitoid attraction in earlier studies. Canonical variate analyses of the data show that the parasitoid responses were dependent on the quality rather than the quantity of volatile emission in this tritrophic interaction. CONCLUSION Overall, these results strengthen the emerging paradigm that induction of plant defences with chemical elicitors such as BTH could provide a sustainable and environmentally friendly strategy for biological control of pests by enhancing the attractiveness of cultivated plants to natural enemies of insect herbivores. © 2014 Society of Chemical Industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical plant strengtheners find increasing use in agriculture to enhance resistance against pathogens. In an earlier study, it was found that treatment with one such resistance elicitor, BTH (benzo-(1, 2, 3)-thiadiazole-7-carbothioic acid S-methyl ester), increases the attractiveness of maize plants to a parasitic wasp. This surprising additional benefit of treating plants with BTH prompted us to conduct a series of olfactometer tests to find out if BTH and another commercially available plant strengthener, Laminarin, increase the attractiveness of maize to three important parasitic wasps, Cotesia marginventris, Campoletis sonorensis, and Microplitis rufiventris. In each case, plants that were sprayed with the plant strengtheners and subsequently induced to release volatiles by real or mimicked attack by Spodoptera littoralis caterpillars became more attractive to the parasitoids than water treated plants. The elicitors alone or in combination with plants that were not induced by herbivory were not attractive to the wasps. Interestingly, plants treated with the plant strengtheners did not show any consistent increase in volatile emissions. On the contrary, treated plants released less herbivore-induced volatiles, most notably indole, which has been reported to interfere with parasitoid attraction. The emission of the sesquiterpenes (E)-β-caryophyllene, β-bergamotene, and (E)-β-farnesene was similarly reduced by the treatment. Expression profiles of marker genes showed that BTH and Laminarin induced several pathogenesis related (PR) genes. The results support the notion that, as yet undetectable and unidentified compounds, are of major importance for parasitoid attraction, and that these attractants may be masked by some of the major compounds in the volatile blends. This study confirms that elicitors of pathogen resistance are compatible with the biological control of insect pests and may even help to improve it.