16 resultados para Bazaine, François-Achille (1811-1888)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Witness through the troubled times. A history of the Orthodox Church of Georgia, 1811 to the present
Resumo:
The meteorological circumstances that led to the Blizzard of March 1888 that hit New York are analysed in Version 2 of the “Twentieth Century Reanalysis” (20CR). The potential of this data set for studying historical extreme events has not yet been fully explored. A detailed analysis of 20CR data alongside other data sources (including historical instrumental data and weather maps) for historical extremes such as the March 1888 blizzard may give insights into the limitations of 20CR. We find that 20CR reproduces the circulation pattern as well as the temperature development very well. Regarding the absolute values of variables such as snow fall or minimum and maximum surface pressure, there is anunderestimation of the observed extremes, which may be due to the low spatial resolution of 20CR and the fact that only the ensemble mean is considered. Despite this drawback, the dataset allows us to gain new information due to its complete spatial and temporal coverage.
Resumo:
In the late 19th century, F.A. FOREL led investigations of the Rhone River delta area of Lake Geneva that resulted in the dis- covery of a textbook example of a river-fed delta system containing impressive subaquatic channels. Well ahead of the marine counterparts, scientific observations and interpretations of water currents shaping the delta edifice for the first time documented how underflow currents carry cold, suspension-laden waters from the river mouth all the way to the deep basin. These early investigations of the Rhone delta laid the basis for follow-up studies in the 20th and 21th centuries. Sediment coring, water-column measurements, manned submersible diving, seismic reflection profiling and bathymetric sur- veying eventually provided a rich database to unravel the key erosional and depositional processes, further documenting the impact of human-induced changes in the catchment. With the merging of old and new scientific knowledge, today a comprehensive understanding prevails of how a delta changes through time, how its channels are formed, and what potential natural hazards may be related to its evolution. New and efficient bathymetric techniques, paired with novel coring operations, provided a time-series of morphologic evolution showing and quantifying the high dynamics of the delta/channel evolution in an unprecedented temporal and spatial reso- lution. Future investigations will continue to further quantify these dynamic processes and to link the evolution of the subaquatic domain with changes and processes in the catchment and with natural hazards. Its size, easy access, and large variety of states and processes will continue to make the Rhone delta area a perfect ‘laboratory’ in which general processes can be studied that could be upscaled or downscaled to other marine and lacustrine deltas.