45 resultados para Bayes Rule
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this work we propose the adoption of a statistical framework used in the evaluation of forensic evidence as a tool for evaluating and presenting circumstantial "evidence" of a disease outbreak from syndromic surveillance. The basic idea is to exploit the predicted distributions of reported cases to calculate the ratio of the likelihood of observing n cases given an ongoing outbreak over the likelihood of observing n cases given no outbreak. The likelihood ratio defines the Value of Evidence (V). Using Bayes' rule, the prior odds for an ongoing outbreak are multiplied by V to obtain the posterior odds. This approach was applied to time series on the number of horses showing clinical respiratory symptoms or neurological symptoms. The separation between prior beliefs about the probability of an outbreak and the strength of evidence from syndromic surveillance offers a transparent reasoning process suitable for supporting decision makers. The value of evidence can be translated into a verbal statement, as often done in forensics or used for the production of risk maps. Furthermore, a Bayesian approach offers seamless integration of data from syndromic surveillance with results from predictive modeling and with information from other sources such as disease introduction risk assessments.
Resumo:
The prognosis of patients in whom pulmonary embolism (PE) is suspected but ruled out is poorly understood. We evaluated whether the initial assessment of clinical probability of PE could help to predict the prognosis for these patients.
Resumo:
The Pulmonary Embolism Rule-out Criteria (PERC) rule is a clinical diagnostic rule designed to exclude pulmonary embolism (PE) without further testing. We sought to externally validate the diagnostic performance of the PERC rule alone and combined with clinical probability assessment based on the revised Geneva score.
Resumo:
Synaptic strength depresses for low and potentiates for high activation of the postsynaptic neuron. This feature is a key property of the Bienenstock–Cooper–Munro (BCM) synaptic learning rule, which has been shown to maximize the selectivity of the postsynaptic neuron, and thereby offers a possible explanation for experience-dependent cortical plasticity such as orientation selectivity. However, the BCM framework is rate-based and a significant amount of recent work has shown that synaptic plasticity also depends on the precise timing of presynaptic and postsynaptic spikes. Here we consider a triplet model of spike-timing–dependent plasticity (STDP) that depends on the interactions of three precisely timed spikes. Triplet STDP has been shown to describe plasticity experiments that the classical STDP rule, based on pairs of spikes, has failed to capture. In the case of rate-based patterns, we show a tight correspondence between the triplet STDP rule and the BCM rule. We analytically demonstrate the selectivity property of the triplet STDP rule for orthogonal inputs and perform numerical simulations for nonorthogonal inputs. Moreover, in contrast to BCM, we show that triplet STDP can also induce selectivity for input patterns consisting of higher-order spatiotemporal correlations, which exist in natural stimuli and have been measured in the brain. We show that this sensitivity to higher-order correlations can be used to develop direction and speed selectivity.