6 resultados para Bayes Estimator

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless Mesh Networks (WMNs) are increasingly deployed to enable thousands of users to share, create, and access live video streaming with different characteristics and content, such as video surveillance and football matches. In this context, there is a need for new mechanisms for assessing the quality level of videos because operators are seeking to control their delivery process and optimize their network resources, while increasing the user’s satisfaction. However, the development of in-service and non-intrusive Quality of Experience assessment schemes for real-time Internet videos with different complexity and motion levels, Group of Picture lengths, and characteristics, remains a significant challenge. To address this issue, this article proposes a non-intrusive parametric real-time video quality estimator, called MultiQoE that correlates wireless networks’ impairments, videos’ characteristics, and users’ perception into a predicted Mean Opinion Score. An instance of MultiQoE was implemented in WMNs and performance evaluation results demonstrate the efficiency and accuracy of MultiQoE in predicting the user’s perception of live video streaming services when compared to subjective, objective, and well-known parametric solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we propose the adoption of a statistical framework used in the evaluation of forensic evidence as a tool for evaluating and presenting circumstantial "evidence" of a disease outbreak from syndromic surveillance. The basic idea is to exploit the predicted distributions of reported cases to calculate the ratio of the likelihood of observing n cases given an ongoing outbreak over the likelihood of observing n cases given no outbreak. The likelihood ratio defines the Value of Evidence (V). Using Bayes' rule, the prior odds for an ongoing outbreak are multiplied by V to obtain the posterior odds. This approach was applied to time series on the number of horses showing clinical respiratory symptoms or neurological symptoms. The separation between prior beliefs about the probability of an outbreak and the strength of evidence from syndromic surveillance offers a transparent reasoning process suitable for supporting decision makers. The value of evidence can be translated into a verbal statement, as often done in forensics or used for the production of risk maps. Furthermore, a Bayesian approach offers seamless integration of data from syndromic surveillance with results from predictive modeling and with information from other sources such as disease introduction risk assessments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of twenty questions with noisy answers, in which we seek to find a target by repeatedly choosing a set, asking an oracle whether the target lies in this set, and obtaining an answer corrupted by noise. Starting with a prior distribution on the target's location, we seek to minimize the expected entropy of the posterior distribution. We formulate this problem as a dynamic program and show that any policy optimizing the one-step expected reduction in entropy is also optimal over the full horizon. Two such Bayes optimal policies are presented: one generalizes the probabilistic bisection policy due to Horstein and the other asks a deterministic set of questions. We study the structural properties of the latter, and illustrate its use in a computer vision application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article provides an importance sampling algorithm for computing the probability of ruin with recuperation of a spectrally negative Lévy risk process with light-tailed downwards jumps. Ruin with recuperation corresponds to the following double passage event: for some t∈(0,∞)t∈(0,∞), the risk process starting at level x∈[0,∞)x∈[0,∞) falls below the null level during the period [0,t][0,t] and returns above the null level at the end of the period tt. The proposed Monte Carlo estimator is logarithmic efficient, as t,x→∞t,x→∞, when y=t/xy=t/x is constant and below a certain bound.