59 resultados para Batch Proof, Verification of Re-encryption, Verification of Decryption, Mix Network

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale: Focal onset epileptic seizures are due to abnormal interactions between distributed brain areas. By estimating the cross-correlation matrix of multi-site intra-cerebral EEG recordings (iEEG), one can quantify these interactions. To assess the topology of the underlying functional network, the binary connectivity matrix has to be derived from the cross-correlation matrix by use of a threshold. Classically, a unique threshold is used that constrains the topology [1]. Our method aims to set the threshold in a data-driven way by separating genuine from random cross-correlation. We compare our approach to the fixed threshold method and study the dynamics of the functional topology. Methods: We investigate the iEEG of patients suffering from focal onset seizures who underwent evaluation for the possibility of surgery. The equal-time cross-correlation matrices are evaluated using a sliding time window. We then compare 3 approaches assessing the corresponding binary networks. For each time window: * Our parameter-free method derives from the cross-correlation strength matrix (CCS)[2]. It aims at disentangling genuine from random correlations (due to finite length and varying frequency content of the signals). In practice, a threshold is evaluated for each pair of channels independently, in a data-driven way. * The fixed mean degree (FMD) uses a unique threshold on the whole connectivity matrix so as to ensure a user defined mean degree. * The varying mean degree (VMD) uses the mean degree of the CCS network to set a unique threshold for the entire connectivity matrix. * Finally, the connectivity (c), connectedness (given by k, the number of disconnected sub-networks), mean global and local efficiencies (Eg, El, resp.) are computed from FMD, CCS, VMD, and their corresponding random and lattice networks. Results: Compared to FMD and VMD, CCS networks present: *topologies that are different in terms of c, k, Eg and El. *from the pre-ictal to the ictal and then post-ictal period, topological features time courses that are more stable within a period, and more contrasted from one period to the next. For CCS, pre-ictal connectivity is low, increases to a high level during the seizure, then decreases at offset. k shows a ‘‘U-curve’’ underlining the synchronization of all electrodes during the seizure. Eg and El time courses fluctuate between the corresponding random and lattice networks values in a reproducible manner. Conclusions: The definition of a data-driven threshold provides new insights into the topology of the epileptic functional networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease." The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Empirical research has illustrated an association between study size and relative treatment effects, but conclusions have been inconsistent about the association of study size with the risk of bias items. Small studies give generally imprecisely estimated treatment effects, and study variance can serve as a surrogate for study size. METHODS We conducted a network meta-epidemiological study analyzing 32 networks including 613 randomized controlled trials, and used Bayesian network meta-analysis and meta-regression models to evaluate the impact of trial characteristics and study variance on the results of network meta-analysis. We examined changes in relative effects and between-studies variation in network meta-regression models as a function of the variance of the observed effect size and indicators for the adequacy of each risk of bias item. Adjustment was performed both within and across networks, allowing for between-networks variability. RESULTS Imprecise studies with large variances tended to exaggerate the effects of the active or new intervention in the majority of networks, with a ratio of odds ratios of 1.83 (95% CI: 1.09,3.32). Inappropriate or unclear conduct of random sequence generation and allocation concealment, as well as lack of blinding of patients and outcome assessors, did not materially impact on the summary results. Imprecise studies also appeared to be more prone to inadequate conduct. CONCLUSIONS Compared to more precise studies, studies with large variance may give substantially different answers that alter the results of network meta-analyses for dichotomous outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the framework of ACTRIS (Aerosols, Clouds, and Trace Gases Research Infrastructure Network) summer 2012 measurement campaign (8 June–17 July 2012), EARLINET organized and performed a controlled exercise of feasibility to demonstrate its potential to perform operational, coordinated measurements and deliver products in near-real time. Eleven lidar stations participated in the exercise which started on 9 July 2012 at 06:00 UT and ended 72 h later on 12 July at 06:00 UT. For the first time, the single calculus chain (SCC) – the common calculus chain developed within EARLINET for the automatic evaluation of lidar data from raw signals up to the final products – was used. All stations sent in real-time measurements of a 1 h duration to the SCC server in a predefined netcdf file format. The pre-processing of the data was performed in real time by the SCC, while the optical processing was performed in near-real time after the exercise ended. 98 and 79 % of the files sent to SCC were successfully pre-processed and processed, respectively. Those percentages are quite large taking into account that no cloud screening was performed on the lidar data. The paper draws present and future SCC users' attention to the most critical parameters of the SCC product configuration and their possible optimal value but also to the limitations inherent to the raw data. The continuous use of SCC direct and derived products in heterogeneous conditions is used to demonstrate two potential applications of EARLINET infrastructure: the monitoring of a Saharan dust intrusion event and the evaluation of two dust transport models. The efforts made to define the measurements protocol and to configure properly the SCC pave the way for applying this protocol for specific applications such as the monitoring of special events, atmospheric modeling, climate research and calibration/validation activities of spaceborne observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARY: Multimodal imaging was performed in Rasmussen Encephalitis (RE) during episodes of complex-partial and focal motor status epilepticus including independent component analysis of BOLD-fMRI, arterial spin labeling perfusion imaging and diffusion tensor imaging. The active epileptic network and topographically independent brain areas showed regional hyperperfusion and progressive atrophy. The results suggest that hyperperfusion outside of the epileptic network represent active inflammation in RE and the imaging protocol presented here, allows assessing thereby the disease activity non-invasively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Recently, Cipriani and colleagues examined the relative efficacy of 12 new-generation antidepressants on major depression using network meta-analytic methods. They found that some of these medications outperformed others in patient response to treatment. However, several methodological criticisms have been raised about network meta-analysis and Cipriani’s analysis in particular which creates the concern that the stated superiority of some antidepressants relative to others may be unwarranted. Materials and Methods: A Monte Carlo simulation was conducted which involved replicating Cipriani’s network metaanalysis under the null hypothesis (i.e., no true differences between antidepressants). The following simulation strategy was implemented: (1) 1000 simulations were generated under the null hypothesis (i.e., under the assumption that there were no differences among the 12 antidepressants), (2) each of the 1000 simulations were network meta-analyzed, and (3) the total number of false positive results from the network meta-analyses were calculated. Findings: Greater than 7 times out of 10, the network meta-analysis resulted in one or more comparisons that indicated the superiority of at least one antidepressant when no such true differences among them existed. Interpretation: Based on our simulation study, the results indicated that under identical conditions to those of the 117 RCTs with 236 treatment arms contained in Cipriani et al.’s meta-analysis, one or more false claims about the relative efficacy of antidepressants will be made over 70% of the time. As others have shown as well, there is little evidence in these trials that any antidepressant is more effective than another. The tendency of network meta-analyses to generate false positive results should be considered when conducting multiple comparison analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Bolivian Amazon several paleochannel generations are preserved. Their wide spectrum of morphologies clearly provides crucial information on the type and magnitude of geomorphic and hydrological changes within the drainage network of the Andean foreland. Therefore, in this study we mapped geomorphological characteristics of paleochannels, and applied radiocarbon and optically stimulated luminescence dating. Seven paleochannel generations are identified. Significant changes in sinuosity, channel widths and river pattern are observed for the successive paleochannel generations. Our results clearly reflect at least three different geomorphic and hydrological periods in the evolution of the fluvial system since the late Pleistocene. Changes in discharge and sediment load may be controlled by combinations of two interrelated mechanisms: (i) spatial changes and re-organizations of the drainage network in the upper catchment, and/or (ii) climate changes with their associated local to catchment-scale modifications in vegetation cover, and changes in discharge, inundation frequencies and magnitudes, which have likely affected the evolution of the fluvial system in the Llanos de Moxos. In summary, our study has revealed the enormous potential which geomorphic mapping and analysis combined with luminescence based chronologies hold for the reconstruction of the late Pleistocene to recent fluvial system in a large portion of Amazonia.