7 resultados para Basic concepts
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a cardiac channelopathy characterized by altered intracellular calcium handling resulting in ventricular arrhythmias and high risk of cardiac sudden death in young cases with normal structural hearts. Patients present with exertional syncope and the trademark dysrhythmia is polymorphic and/or bidirectional ventricular tachycardia during exercise or adrenergic stimulation. Early detection of CPVT is crucial because opportune medical intervention prevents sudden cardiac death. Mutations in the ryanodine receptor RYR2 explain nearly 70% of the CPVT cases and cause the autosomic dominant form of the disease. Mutations in calsequestrin 2 causes a recessive form and explain less than 5% of all cases. Genetic screening in CPVT, besides providing early detection of asymptomatic carriers at risk, has provided important insights in the mechanism underlying the disease. Mutational analysis of RYR2 has been a challenge due to the large size of the gene, 105 exons encoded for 4,967 amino-acids. In this review we analyze general concepts of the disease, differential diagnosis and strategies for genetic screening.
Resumo:
The theory on the intensities of 4f-4f transitions introduced by B.R. Judd and G.S. Ofelt in 1962 has become a center piece in rare-earth optical spectroscopy over the past five decades. Many fundamental studies have since explored the physical origins of the Judd–Ofelt theory and have proposed numerous extensions to the original model. A great number of studies have applied the Judd–Ofelt theory to a wide range of rare-earth doped materials, many of them with important applications in solid-state lasers, optical amplifiers, phosphors for displays and solid state lighting, upconversion and quantum-cutting materials, and fluorescent markers. This paper takes the view of the experimentalist who is interested in appreciating the basic concepts, implications, assumptions, and limitations of the Judd–Ofelt theory in order to properly apply it to practical problems. We first present the formalism for calculating the wavefunctions of 4f electronic states in a concise form and then show their application to the calculation and fitting of 4f-4f transition intensities. The potential, limitations and pitfalls of the theory are discussed, and a detailed case study of LaCl3:Er3+ is presented.
Resumo:
Systemic thinking may be traced hack to several roots. Some of them can he found in Taoism, the basic concepts of which are the achievement of cosmic harmony and a well-balanced social order. Others can be found in Greek philosophy. Similarly, modern physics in its most advanced branches is now recognizing basic aspects of these same roots in a scientific guise. The more the process of research and theory building advances, the more phenomena are recognized as complex and interdependent with other phenomena. Interdisciplinary research and the constitution of new disciplines are contributing to a scientific approximation of integral reality, which is becoming more and more like the one everyone knows as prescientific. The transcendence of the narrow boundaries of positivist sciences seems to be becoming a necessity for scientific evolution. The ecological crisis of the twentieth century may itself lead to increased systemic thinking, and it is in full awareness of the fact that there are no simple solutions that the systemic evaluator tries to cope with the problems of the dynamics of social and political interventions in the Third World as a means of development co-operation..
Resumo:
Live vaccines possess the advantage of having access to induce cell-mediated and antibody-mediated immunity; thus in certain cases they are able to prevent infection, and not only disease. Furthermore, live vaccines, particularly bacterial live vaccines, are relatively cheap to produce and easy to apply. Hence they are suitable to immunize large communities or herds. The induction of both cell-mediated immunity as well as antibody-mediated immunity, which is particularly beneficial in inducing mucosal immune responses, is obtained by the vaccine-strain's ability to colonize and multiply in the host without causing disease. For this reason, live vaccines require attenuation of virulence of the bacterium to which immunity must be induced. Traditionally attenuation was achieved simply by multiple passages of the microorganism on growth medium, in animals, eggs or cell cultures or by chemical or physical mutagenesis, which resulted in random mutations that lead to attenuation. In contrast, novel molecular methods enable the development of genetically modified organisms (GMOs) targeted to specific genes that are particularly suited to induce attenuation or to reduce undesirable effects in the tissue in which the vaccine strains can multiply and survive. Since live vaccine strains (attenuated by natural selection or genetic engineering) are potentially released into the environment by the vaccinees, safety issues concerning the medical as well as environmental aspects must be considered. These involve (i) changes in cell, tissue and host tropism, (ii) virulence of the carrier through the incorporation of foreign genes, (iii) reversion to virulence by acquisition of complementation genes, (iv) exchange of genetic information with other vaccine or wild-type strains of the carrier organism and (v) spread of undesired genes such as antibiotic resistance genes. Before live vaccines are applied, the safety issues must be thoroughly evaluated case-by-case. Safety assessment includes knowledge of the precise function and genetic location of the genes to be mutated, their genetic stability, potential reversion mechanisms, possible recombination events with dormant genes, gene transfer to other organisms as well as gene acquisition from other organisms by phage transduction, transposition or plasmid transfer and cis- or trans-complementation. For this, GMOs that are constructed with modern techniques of genetic engineering display a significant advantage over random mutagenesis derived live organisms. The selection of suitable GMO candidate strains can be made under in vitro conditions using basic knowledge on molecular mechanisms of pathogenicity of the corresponding bacterial species rather than by in vivo testing of large numbers of random mutants. This leads to a more targeted safety testing on volunteers and to a reduction in the use of animal experimentation.
Resumo:
Relatively little is known about past cold-season temperature variability in high-Alpine regions because of a lack of natural cold-season temperature proxies as well as under-representation of high-altitude sites in meteorological, early-instrumental and documentary data sources. Recent studies have shown that chrysophyte stomatocysts, or simply cysts (sub-fossil algal remains of Chrysophyceae and Synurophyceae), are among the very few natural proxies that can be used to reconstruct cold-season temperatures. This study presents a quantitative, high-resolution (5-year), cold-season (Oct–May) temperature reconstruction based on sub-fossil chrysophyte stomatocysts in the annually laminated (varved) sediments of high-Alpine Lake Silvaplana, SE Switzerland (1,789 m a.s.l.), since AD 1500. We first explore the method used to translate an ecologically meaningful variable based on a biological proxy into a simple climate variable. A transfer function was applied to reconstruct the ‘date of spring mixing’ from cyst assemblages. Next, statistical regression models were tested to convert the reconstructed ‘dates of spring mixing’ into cold-season surface air temperatures with associated errors. The strengths and weaknesses of this approach are thoroughly tested. One much-debated, basic assumption for reconstructions (‘stationarity’), which states that only the environmental variable of interest has influenced cyst assemblages and the influence of confounding variables is negligible over time, is addressed in detail. Our inferences show that past cold-season air-temperature fluctuations were substantial and larger than those of other temperature reconstructions for Europe and the Alpine region. Interestingly, in this study, recent cold-season temperatures only just exceed those of previous, multi-decadal warm phases since AD 1500. These findings highlight the importance of local studies to assess natural climate variability at high altitudes.