12 resultados para Balneario de Villaro (Vizcaya).
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To determine magnitude and reasons of loss to program and poor antiretroviral prophylaxis coverage in prevention of mother-to-child transmission (PMTCT) programs in sub-Saharan Africa.
Resumo:
OBJECTIVES: Treatment as prevention depends on retaining HIV-infected patients in care. We investigated the effect on HIV transmission of bringing patients lost to follow up (LTFU) back into care. DESIGN: Mathematical model. METHODS: Stochastic mathematical model of cohorts of 1000 HIV-infected patients on antiretroviral therapy (ART), based on data from two clinics in Lilongwe, Malawi. We calculated cohort viral load (CVL; sum of individual mean viral loads each year) and used a mathematical relationship between viral load and transmission probability to estimate the number of new HIV infections. We simulated four scenarios: 'no LTFU' (all patients stay in care); 'no tracing' (patients LTFU are not traced); 'immediate tracing' (after missed clinic appointment); and, 'delayed tracing' (after six months). RESULTS: About 440 of 1000 patients were LTFU over five years. CVL (million copies/ml per 1000 patients) were 3.7 (95% prediction interval [PrI] 2.9-4.9) for no LTFU, 8.6 (95% PrI 7.3-10.0) for no tracing, 7.7 (95% PrI 6.2-9.1) for immediate, and 8.0 (95% PrI 6.7-9.5) for delayed tracing. Comparing no LTFU with no tracing the number of new infections increased from 33 (95% PrI 29-38) to 54 (95% PrI 47-60) per 1000 patients. Immediate tracing prevented 3.6 (95% PrI -3.3-12.8) and delayed tracing 2.5 (95% PrI -5.8-11.1) new infections per 1000. Immediate tracing was more efficient than delayed tracing: 116 and to 142 tracing efforts, respectively, were needed to prevent one new infection. CONCLUSION: Tracing of patients LTFU enhances the preventive effect of ART, but the number of transmissions prevented is small.
Resumo:
BACKGROUND Monitoring of HIV viral load in patients on combination antiretroviral therapy (ART) is not generally available in resource-limited settings. We examined the cost-effectiveness of qualitative point-of-care viral load tests (POC-VL) in sub-Saharan Africa. DESIGN Mathematical model based on longitudinal data from the Gugulethu and Khayelitsha township ART programmes in Cape Town, South Africa. METHODS Cohorts of patients on ART monitored by POC-VL, CD4 cell count or clinically were simulated. Scenario A considered the more accurate detection of treatment failure with POC-VL only, and scenario B also considered the effect on HIV transmission. Scenario C further assumed that the risk of virologic failure is halved with POC-VL due to improved adherence. We estimated the change in costs per quality-adjusted life-year gained (incremental cost-effectiveness ratios, ICERs) of POC-VL compared with CD4 and clinical monitoring. RESULTS POC-VL tests with detection limits less than 1000 copies/ml increased costs due to unnecessary switches to second-line ART, without improving survival. Assuming POC-VL unit costs between US$5 and US$20 and detection limits between 1000 and 10,000 copies/ml, the ICER of POC-VL was US$4010-US$9230 compared with clinical and US$5960-US$25540 compared with CD4 cell count monitoring. In Scenario B, the corresponding ICERs were US$2450-US$5830 and US$2230-US$10380. In Scenario C, the ICER ranged between US$960 and US$2500 compared with clinical monitoring and between cost-saving and US$2460 compared with CD4 monitoring. CONCLUSION The cost-effectiveness of POC-VL for monitoring ART is improved by a higher detection limit, by taking the reduction in new HIV infections into account and assuming that failure of first-line ART is reduced due to targeted adherence counselling.
Resumo:
Background: WHO's 2013 revisions to its Consolidated Guidelines on antiretroviral drugs recommend routine viral load monitoring, rather than clinical or immunological monitoring, as the preferred monitoring approach on the basis of clinical evidence. However, HIV programmes in resource-limited settings require guidance on the most cost-effective use of resources in view of other competing priorities such as expansion of antiretroviral therapy coverage. We assessed the cost-effectiveness of alternative patient monitoring strategies. Methods: We evaluated a range of monitoring strategies, including clinical, CD4 cell count, and viral load monitoring, alone and together, at different frequencies and with different criteria for switching to second-line therapies. We used three independently constructed and validated models simultaneously. We estimated costs on the basis of resource use projected in the models and associated unit costs; we quantified impact as disability-adjusted life years (DALYs) averted. We compared alternatives using incremental cost-effectiveness analysis. Findings: All models show that clinical monitoring delivers significant benefit compared with a hypothetical baseline scenario with no monitoring or switching. Regular CD4 cell count monitoring confers a benefit over clinical monitoring alone, at an incremental cost that makes it affordable in more settings than viral load monitoring, which is currently more expensive. Viral load monitoring without CD4 cell count every 6—12 months provides the greatest reductions in morbidity and mortality, but incurs a high cost per DALY averted, resulting in lost opportunities to generate health gains if implemented instead of increasing antiretroviral therapy coverage or expanding antiretroviral therapy eligibility. Interpretation: The priority for HIV programmes should be to expand antiretroviral therapy coverage, firstly at CD4 cell count lower than 350 cells per μL, and then at a CD4 cell count lower than 500 cells per μL, using lower-cost clinical or CD4 monitoring. At current costs, viral load monitoring should be considered only after high antiretroviral therapy coverage has been achieved. Point-of-care technologies and other factors reducing costs might make viral load monitoring more affordable in future. Funding: Bill & Melinda Gates Foundation, WHO.
Resumo:
Abstract Objectives: HIV 'treatment as prevention' (TasP) describes early treatment of HIV-infected patients intended to reduce viral load and transmission. Crucial assumptions for estimating TasP's effectiveness are the underlying estimates of transmission risk. We aimed to determine transmission risk during primary infection, and of the relation of HIV transmission risk to viral load. Design: A systematic review and meta-analysis. Methods: We searched PubMed and Embase databases for studies that established a relationship between viral load and transmission risk, or primary infection and transmission risk, in serodiscordant couples. We analysed assumptions about the relationship between viral load and transmission risk, and between duration of primary infection and transmission risk. Results: We found 36 eligible articles, based on six different study populations. Studies consistently found that larger viral loads lead to higher HIV transmission rates, but assumptions about the shape of this increase varied from exponential increase to saturation. The assumed duration of primary infection ranged from 1.5 to 12 months; for each additional month, the log10 transmission rate ratio between primary and asymptomatic infection decreased by 0.40. Conclusion: Assumptions and estimates of the relationship between viral load and transmission risk, and the relationship between primary infection and transmission risk, vary substantially and predictions of TasP's effectiveness should take this uncertainty into account.
Resumo:
OBJECTIVES Many paediatric antiretroviral therapy (ART) programmes in Southern Africa rely on CD4⁺ to monitor ART. We assessed the benefit of replacing CD4⁺ by viral load monitoring. DESIGN A mathematical modelling study. METHODS A simulation model of HIV progression over 5 years in children on ART, parameterized by data from seven South African cohorts. We simulated treatment programmes with 6-monthly CD4⁺ or 6- or 12-monthly viral load monitoring. We compared mortality, second-line ART use, immunological failure and time spent on failing ART. In further analyses, we varied the rate of virological failure, and assumed that the rate is higher with CD4⁺ than with viral load monitoring. RESULTS About 7% of children were predicted to die within 5 years, independent of the monitoring strategy. Compared with CD4⁺ monitoring, 12-monthly viral load monitoring reduced the 5-year risk of immunological failure from 1.6 to 1.0% and the mean time spent on failing ART from 6.6 to 3.6 months; 1% of children with CD4⁺ compared with 12% with viral load monitoring switched to second-line ART. Differences became larger when assuming higher rates of virological failure. When assuming higher virological failure rates with CD4⁺ than with viral load monitoring, up to 4.2% of children with CD4⁺ compared with 1.5% with viral load monitoring experienced immunological failure; the mean time spent on failing ART was 27.3 months with CD4⁺ monitoring and 6.0 months with viral load monitoring. Conclusion: Viral load monitoring did not affect 5-year mortality, but reduced time on failing ART, improved immunological response and increased switching to second-line ART.
Resumo:
Mathematical models of disease progression predict disease outcomes and are useful epidemiological tools for planners and evaluators of health interventions. The R package gems is a tool that simulates disease progression in patients and predicts the effect of different interventions on patient outcome. Disease progression is represented by a series of events (e.g., diagnosis, treatment and death), displayed in a directed acyclic graph. The vertices correspond to disease states and the directed edges represent events. The package gems allows simulations based on a generalized multistate model that can be described by a directed acyclic graph with continuous transition-specific hazard functions. The user can specify an arbitrary hazard function and its parameters. The model includes parameter uncertainty, does not need to be a Markov model, and may take the history of previous events into account. Applications are not limited to the medical field and extend to other areas where multistate simulation is of interest. We provide a technical explanation of the multistate models used by gems, explain the functions of gems and their arguments, and show a sample application.
Resumo:
BACKGROUND The cost-effectiveness of routine viral load (VL) monitoring of HIV-infected patients on antiretroviral therapy (ART) depends on various factors that differ between settings and across time. Low-cost point-of-care (POC) tests for VL are in development and may make routine VL monitoring affordable in resource-limited settings. We developed a software tool to study the cost-effectiveness of switching to second-line ART with different monitoring strategies, and focused on POC-VL monitoring. METHODS We used a mathematical model to simulate cohorts of patients from start of ART until death. We modeled 13 strategies (no 2nd-line, clinical, CD4 (with or without targeted VL), POC-VL, and laboratory-based VL monitoring, with different frequencies). We included a scenario with identical failure rates across strategies, and one in which routine VL monitoring reduces the risk of failure. We compared lifetime costs and averted disability-adjusted life-years (DALYs). We calculated incremental cost-effectiveness ratios (ICER). We developed an Excel tool to update the results of the model for varying unit costs and cohort characteristics, and conducted several sensitivity analyses varying the input costs. RESULTS Introducing 2nd-line ART had an ICER of US$1651-1766/DALY averted. Compared with clinical monitoring, the ICER of CD4 monitoring was US$1896-US$5488/DALY averted and VL monitoring US$951-US$5813/DALY averted. We found no difference between POC- and laboratory-based VL monitoring, except for the highest measurement frequency (every 6 months), where laboratory-based testing was more effective. Targeted VL monitoring was on the cost-effectiveness frontier only if the difference between 1st- and 2nd-line costs remained large, and if we assumed that routine VL monitoring does not prevent failure. CONCLUSION Compared with the less expensive strategies, the cost-effectiveness of routine VL monitoring essentially depends on the cost of 2nd-line ART. Our Excel tool is useful for determining optimal monitoring strategies for specific settings, with specific sex-and age-distributions and unit costs.
Resumo:
Background. The hepatitis C virus (HCV) epidemic is evolving rapidly in patients infected with human immunodeficiency virus (HIV). We aimed to describe changes in treatment uptake and outcomes of incident HCV infections before and after 2006, the time-point at which major changes in HCV epidemic became apparent. Methods. We included all adults with an incident HCV infection before June 2012 in the Swiss HIV Cohort Study, a prospective nationwide representative cohort of individuals infected with HIV. We assessed the following outcomes by time period: the proportion of patients starting an HCV therapy, the proportion of treated patients achieving a sustained virological response (SVR), and the proportion of patients with persistent HCV infection during follow-up. Results. Of 193 patients with an HCV seroconversion, 106 were diagnosed before and 87 after January 2006. The proportion of men who have sex with men increased from 24% before to 85% after 2006 (P < .001). Hepatitis C virus treatment uptake increased from 33% before 2006 to 77% after 2006 (P < .001). Treatment was started during early infection in 22% of patients before and 91% after 2006 (P < .001). An SVR was achieved in 78% and 29% (P = .01) of patients treated during early and chronic HCV infection. The probability of having a detectable viral load 5 years after diagnosis was 0.67 (95% confidence interval [CI], 0.58-0.77) in the group diagnosed before 2006 and 0.24 (95% CI, 0.16-0.35) in the other group (P < .001). Conclusions. In recent years, increased uptake and earlier initiation of HCV therapy among patients with incident infections significantly reduced the proportion of patients with replicating HCV.
Resumo:
BACKGROUND AND AIMS Hepatitis C (HCV) is a leading cause of morbidity and mortality in people who live with HIV. In many countries, access to direct acting antiviral agents to treat HCV is restricted to individuals with advanced liver disease (METAVIR stage F3 or F4). Our goal was to estimate the long term impact of deferring HCV treatment for men who have sex with men (MSM) who are coinfected with HIV and often have multiple risk factors for liver disease progression. METHODS We developed an individual-based model of liver disease progression in HIV/HCV coinfected men who have sex with men. We estimated liver-related morbidity and mortality as well as the median time spent with replicating HCV infection when individuals were treated in liver fibrosis stages F0, F1, F2, F3 or F4 on the METAVIR scale. RESULTS The percentage of individuals who died of liver-related complications was 2% if treatment was initiated in F0 or F1. It increased to 3% if treatment was deferred until F2, 7% if it was deferred until F3 and 22% if deferred until F4. The median time individuals spent with replicating HCV increased from 5 years if treatment was initiated in F2 to almost 15 years if it was deferred until F4. CONCLUSIONS Deferring HCV therapy until advanced liver fibrosis is established could increase liver-related morbidity and mortality in HIV/HCV coinfected individuals, and substantially prolong the time individuals spend with replicating HCV infection.
Resumo:
BACKGROUND The number of patients in need of second-line antiretroviral drugs is increasing in sub-Saharan Africa. We aimed to project the need of second-line antiretroviral therapy in adults in sub-Saharan Africa up to 2030. METHODS We developed a simulation model for HIV and applied it to each sub-Saharan African country. We used the WHO country intelligence database to estimate the number of adult patients receiving antiretroviral therapy from 2005 to 2014. We fitted the number of adult patients receiving antiretroviral therapy to observed estimates, and predicted first-line and second-line needs between 2015 and 2030. We present results for sub-Saharan Africa, and eight selected countries. We present 18 scenarios, combining the availability of viral load monitoring, speed of antiretroviral scale-up, and rates of retention and switching to second-line. HIV transmission was not included. FINDINGS Depending on the scenario, 8·7-25·6 million people are expected to receive antiretroviral therapy in 2020, of whom 0·5-3·0 million will be receiving second-line antiretroviral therapy. The proportion of patients on treatment receiving second-line therapy was highest (15·6%) in the scenario with perfect retention and immediate switching, no further scale-up, and universal routine viral load monitoring. In 2030, the estimated range of patients receiving antiretroviral therapy will remain constant, but the number of patients receiving second-line antiretroviral therapy will increase to 0·8-4·6 million (6·6-19·6%). The need for second-line antiretroviral therapy was two to three times higher if routine viral load monitoring was implemented throughout the region, compared with a scenario of no further viral load monitoring scale-up. For each monitoring strategy, the future proportion of patients receiving second-line antiretroviral therapy differed only minimally between countries. INTERPRETATION Donors and countries in sub-Saharan Africa should prepare for a substantial increase in the need for second-line drugs during the next few years as access to viral load monitoring improves. An urgent need exists to decrease the costs of second-line drugs. FUNDING World Health Organization, Swiss National Science Foundation, National Institutes of Health.
Resumo:
BACKGROUND Tuberculosis (TB) is the leading cause of death in South Africa. The burden of disease varies by age, with peaks in TB notification rates in the HIV-negative population at ages 0-5, 20-24, and 45-49 years. There is little variation between age groups in the rates in the HIV-positive population. The drivers of this age pattern remain unknown. METHODS We developed an age-structured simulation model of Mycobacterium tuberculosis (Mtb) transmission in Cape Town, South Africa. We considered five states of TB progression: susceptible, infected (latent TB), active TB, treated TB, and treatment default. Latently infected individuals could be re-infected; a previous Mtb infection slowed progression to active disease. We further considered three states of HIV progression: HIV negative, HIV positive, on antiretroviral therapy. To parameterize the model, we analysed treatment outcomes from the Cape Town electronic TB register, social mixing patterns from a Cape Town community and used literature estimates for other parameters. To investigate the main drivers behind the age patterns, we conducted sensitivity analyses on all parameters related to the age structure. RESULTS The model replicated the age patterns in HIV-negative TB notification rates of Cape Town in 2009. Simulated TB notification rate in HIV-negative patients was 1000/100,000 person-years (pyrs) in children aged <5 years and decreased to 51/100,000 in children 5-15 years. The peak in early adulthood occurred at 25-29 years (463/100,000 pyrs). After a subsequent decline, simulated TB notification rates gradually increased from the age of 30 years. Sensitivity analyses showed that the dip after the early adult peak was due to the protective effect of latent TB and that retreatment TB was mainly responsible for the rise in TB notification rates from the age of 30 years. CONCLUSION The protective effect of a first latent infection on subsequent infections and the faster progression in previously treated patients are the key determinants of the age-structure of TB notification rates in Cape Town.