17 resultados para Ballistics, Interior

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A basic understanding of the ballistic behaviour of projectiles or fragments after entering the human body is essential for the head and neck surgeon in the military environment in order to anticipate the diagnostic and therapeutic consequences of this type of injury. Although a large number of factors influence the missile in flight and after penetration of the body, the most important factor is the amount of energy transmitted to the tissue. Long guns (rifles or shotguns) have a much higher muzzle energy compared to handguns, explaining why the remote effects beyond the bullet track play a major role. While most full metal jacket bullets release their energy after 12-20 cm (depending on the calibre), soft point bullets release their energy immediately after entry into the human body. This results in a major difference in extremity wounds, but not so much in injuries with long bullet paths (e.g. diagonal shots). Shrapnel wounds are usually produced with similarly high kinetic energy to those caused by hand- and long guns. However, fragments tend to dissipate the entire amount of energy within the body, which increases the degree of tissue disruption. Of all relevant injuries in the head and neck region, soft tissue injuries make up the largest proportion (60%), while injuries to the face are seen three times more often than injuries to the neck. Concomitant intracranial or spinal injury is seen in 30% of cases. Due to high levels of wound contamination, the infection rate is approximately 15%, often associated with a complicated and/or multiresistant spectrum of germs.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In practical forensic casework, backspatter recovered from shooters' hands can be an indicator of self-inflicted gunshot wounds to the head. In such cases, backspatter retrieved from inside the barrel indicates that the weapon found at the death scene was involved in causing the injury to the head. However, systematic research on the aspects conditioning presence, amount and specific patterns of backspatter is lacking so far. Herein, a new concept of backspatter investigation is presented, comprising staining technique, weapon and target medium: the 'triple contrast method' was developed, tested and is introduced for experimental backspatter analysis. First, mixtures of various proportions of acrylic paint for optical detection, barium sulphate for radiocontrast imaging in computed tomography and fresh human blood for PCR-based DNA profiling were generated (triple mixture) and tested for DNA quantification and short tandem repeat (STR) typing success. All tested mixtures yielded sufficient DNA that produced full STR profiles suitable for forensic identification. Then, for backspatter analysis, sealed foil bags containing the triple mixture were attached to plastic bottles filled with 10 % ballistic gelatine and covered by a 2-3-mm layer of silicone. To simulate backspatter, close contact shots were fired at these models. Endoscopy of the barrel inside revealed coloured backspatter containing typable DNA and radiographic imaging showed a contrasted bullet path in the gelatine. Cross sections of the gelatine core exhibited cracks and fissures stained by the acrylic paint facilitating wound ballistic analysis.