31 resultados para Bacteriology.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In Lactococcus lactis IL1403, 14 genes are under the control of the copper-inducible CopR repressor. This so-called CopR regulon encompasses the CopR regulator, two putative CPx-type copper ATPases, a copper chaperone, and 10 additional genes of unknown function. We addressed here the function of one of these genes, ytjD, which we renamed cinD (copper-induced nitroreductase). Copper, cadmium, and silver induced cinD in vivo, as shown by real-time quantitative PCR. A knockout mutant of cinD was more sensitive to oxidative stress exerted by 4-nitroquinoline-N-oxide and copper. Purified CinD is a flavoprotein and reduced 2,6-dichlorophenolindophenol and 4-nitroquinoline-N-oxide with k(cat) values of 27 and 11 s(-1), respectively, using NADH as a reductant. CinD also exhibited significant catalase activity in vitro. The X-ray structure of CinD was resolved at 1.35 A and resembles those of other nitroreductases. CinD is thus a nitroreductase which can protect L. lactis against oxidative stress that could be exerted by nitroaromatic compounds and copper.
Resumo:
Desulfovibrio sp. A2 is an anaerobic gram-negative sulfate-reducing bacterium with remarkable tolerance to copper. It was isolated from wastewater effluents of a zinc smelter at the Urals. Here, we report the 4.2-Mb draft genome sequence of Desulfovibrio sp. A2 and identify potential copper resistance mechanisms.
Resumo:
We have sequenced the genome of Desulfosporosinus sp. OT, a Gram-positive, acidophilic sulfate-reducing Firmicute isolated from copper tailing sediment in the Norilsk mining-smelting area in Northern Siberia, Russia. This represents the first sequenced genome of a Desulfosporosinus species. The genome has a size of 5.7 Mb and encodes 6,222 putative proteins.
Resumo:
The surfaces of Bacillus anthracis endospores expose a pentasaccharide containing the monosaccharide anthrose, which has been considered for use as a vaccine or target for specific detection of the spores. In this study B. anthracis strains isolated from cattle carcasses in African countries where anthrax is endemic were tested for their cross-reactivity with monoclonal antibodies (MAbs) specific for anthrose-containing oligosaccharides. Unexpectedly, none of the isolates collected in Chad, Cameroon, and Mali were recognized by the MAbs. Sequencing of the four-gene operon encoding anthrose biosynthetic enzymes revealed the presence of premature stop codons in the aminotransferase and glycosyltransferase genes in all isolates from Chad, Cameroon, and Mali. Both immunological and genetic findings suggest that the West African isolates are unable to produce anthrose. The anthrose-deficient strains from West Africa belong to a particular genetic lineage. Immunization of cattle in Chad with a locally produced vaccine based on anthrose-positive spores of the B. anthracis strain Sterne elicited an anti-carbohydrate IgG response specific for a synthetic anthrose-containing tetrasaccharide as demonstrated by glycan microarray analysis. Competition immunoblots with synthetic pentasaccharide derivatives suggested an immunodominant role of the anthrose-containing carbohydrate in cattle. In West Africa anthrax is highly endemic. Massive vaccination of livestock in this area has taken place over long periods of time using spores of the anthrose-positive vaccine strain Sterne. The spread of anthrose-deficient strains in this region may represent an escape strategy of B. anthracis.
Resumo:
Lipoprotein T (LppT), a membrane-located 105-kDa lipoprotein of Mycoplasma conjunctivae, the etiological agent of infectious keratoconjunctivitis (IKC) of domestic sheep and wild Caprinae, was characterized. LppT was shown to promote cell attachment to LSM 192 primary lamb joint synovial cells. Adhesion of M. conjunctivae to LSM 192 cells is inhibited by antibodies directed against LppT. The RGD (Arg-Gly-Asp) motif of LppT was found to be a specific site for binding of M. conjunctivae to these eukaryotic host cells. Recombinant LppT fixed to polymethylmethacrylate slides binds LSM 192 cells, whereas LppT lacking the RGD site is deprived of binding capacity to LSM 192, and LppT containing RGE rather than RGD shows reduced binding. Synthetic nonapeptides derived from LppT containing RGD competitively inhibit binding of LSM 192 cells to LppT-coated slides, whereas nonapeptides containing RAD rather than RGD do not inhibit. RGD-containing, LppT-derived nonapeptides are able to directly inhibit binding of M. conjunctivae to LSM 192 cells by competitive inhibition, whereas the analogous nonapeptide containing RAD rather than RGD or the fibronectin-derived RGD hexapeptide has no inhibitory effect. These results reveal LppT as the first candidate of a RGD lectin in Mycoplasma species that is assumed to bind to beta integrins.
Resumo:
Enterococcus hirae ATCC 9790 is a Gram-positive lactic acid bacterium that has been used in basic research for over 4 decades. Here we report the sequence and annotation of the 2.8-Mb genome of E. hirae and its endemic 29-kb plasmid pTG9790.
A metabolic enzyme as a primary virulence factor of Mycoplasma mycoides subsp. mycoides small colony
Resumo:
During evolution, pathogenic bacteria have developed complex interactions with their hosts. This has frequently involved the acquisition of virulence factors on pathogenicity islands, plasmids, transposons, or prophages, allowing them to colonize, survive, and replicate within the host. In contrast, Mycoplasma species, the smallest self-replicating organisms, have regressively evolved from gram-positive bacteria by reduction of the genome to a minimal size, with the consequence that they have economized their genetic resources. Hence, pathogenic Mycoplasma species lack typical primary virulence factors such as toxins, cytolysins, and invasins. Consequently, little is known how pathogenic Mycoplasma species cause host cell damage, inflammation, and disease. Here we identify a novel primary virulence determinant in Mycoplasma mycoides subsp. mycoides Small Colony (SC), which causes host cell injury. This virulence factor, released in significant amounts in the presence of glycerol in the growth medium, consists of toxic by-products such as H2O2 formed by l-alpha-glycerophosphate oxidase (GlpO), a membrane-located enzyme that is involved in the metabolism of glycerol. When embryonic calf nasal epithelial cells are infected with M. mycoides subsp. mycoides SC in the presence of physiological amounts of glycerol, H2O2 is released inside the cells prior to cell death. This process can be inhibited with monospecific anti-GlpO antibodies.
Resumo:
A spontaneous mutant (M113) of Escherichia coli AG100 with an unstable multiple antibiotic resistance (Mar) phenotype was isolated in the presence of tetracycline. Two mutations were found: an insertion in the promoter of lon (lon3::IS186) that occurred first and a subsequent large tandem duplication, dupIS186, bearing the genes acrAB and extending from the lon3::IS186 to another IS186 present 149 kb away from lon. The decreased amount of Lon protease increased the amount of MarA by stabilization of the basal quantities of MarA produced, which in turn increased the amount of multidrug effux pump AcrAB-TolC. However, in a mutant carrying only a lon mutation, the overproduced pump mediated little, if any, increased multidrug resistance, indicating that the Lon protease was required for the function of the pump. This requirement was only partial since resistance was mediated when amounts of AcrAB in a lon mutant were further increased by a second mutation. In M113, amplification of acrAB on the duplication led to increased amounts of AcrAB and multidrug resistance. Spontaneous gene duplication represents a new mechanism for mediating multidrug resistance in E. coli through AcrAB-TolC.
Resumo:
Diagnosis of udder infections with Staphylococcus aureus by bacteriological milk testing of quarter milk samples is often not satisfactory. To get reliable results, repeated sampling is necessary, which is normally too expensive. Therefore, we developed a test that allows the highly specific detection of Staph. aureus in bovine milk samples at very low concentrations. It is based on a fast procedure to prepare bacteria from milk, followed by DNA extraction and quantitative PCR. The whole analysis is done within 5 h. For clinical milk samples, the analytical sensitivity of the assay was 50.7 times and 507 times higher than conventional bacteriology with 100 and 10 microL, respectively. The diagnostic specificity was 100%. The test is further characterized by a low intra- and interassay variability as well as by a good recovery of Staph. aureus from raw milk. Furthermore, a high correlation (R = 0.925) between the agar plate counts and the quantitative PCR methodology over the whole range of measurement was found. In addition, our test revealed considerably more positive results than bacteriology. Due to its favorable properties, the assay might become an important diagnostic tool in the context of bovine mastitis caused by Staph. aureus.
Resumo:
Lactococcus lactis IL1403, a lactic acid bacterium widely used for food fermentation, is often exposed to stress conditions. One such condition is exposure to copper, such as in cheese making in copper vats. Copper is an essential micronutrient in prokaryotes and eukaryotes but can be toxic if in excess. Thus, copper homeostatic mechanisms, consisting chiefly of copper transporters and their regulators, have evolved in all organisms to control cytoplasmic copper levels. Using proteomics to identify novel proteins involved in the response of L. lactis IL1403 to copper, cells were exposed to 200 muM copper sulfate for 45 min, followed by resolution of the cytoplasmic fraction by two-dimensional gel electrophoresis. One protein strongly induced by copper was LctO, which was shown to be a NAD-independent lactate oxidase. It catalyzed the conversion of lactate to pyruvate in vivo and in vitro. Copper, cadmium, and silver induced LctO, as shown by real-time quantitative PCR. A copper-regulatory element was identified in the 5' region of the lctO gene and shown to interact with the CopR regulator, encoded by the unlinked copRZA operon. Induction of LctO by copper represents a novel copper stress response, and we suggest that it serves in the scavenging of molecular oxygen.
Resumo:
In Streptococcus pneumoniae expression of pyruvate oxidase (SpxB) peaks during the early growth phase, coincident with the time of natural competence. This study investigated whether SpxB influences parameters of competence, such as spontaneous transformation frequency, expression of competence genes, and DNA release. Knockout of the spxB gene in strain D39 abolished spontaneous transformation (compared to a frequency of 6.3 x 10(-6) in the parent strain [P < 0.01]). It also reduced expression levels of comC and recA as well as DNA release from bacterial cells significantly during the early growth phase, coincident with the time of spontaneous competence in the parent strain. In the spxB mutant, supplementation with competence-stimulating peptide 1 (CSP-1) restored transformation (rate, 1.8 x 10(-2)). This speaks against the role of SpxB as a necessary source of energy for competence. Neither supplementation with CSP-1 nor supplementation with the SpxB products H2O2 and acetate altered DNA release. Supplementation of the parent strain with catalase did not reduce DNA release significantly. In conclusion, the pneumococcal spxB gene influences competence; however, the mechanism remains elusive.
Resumo:
The epidemiology, phylogeny, and biology of nonencapsulated Streptococcus pneumoniae are largely unknown. Increased colonization capacity and transformability are, however, intriguing features of these pneumococci and play an important role. Twenty-seven nonencapsulated pneumococci were identified in a nationwide collection of 1,980 nasopharyngeal samples and 215 blood samples obtained between 1998 and 2002. On the basis of multilocus sequence typing and capsule region analysis we divided the nonencapsulated pneumococci into two groups. Group I was closely related to encapsulated strains. Group II had a clonal population structure, including two geographically widespread clones able to cause epidemic conjunctivitis and invasive diseases. Group II strains also carried a 1,959-bp homologue of aliB (aliB-like ORF 2) in the capsule region, which was highly homologous to a sequence in the capsule region of Streptococcus mitis. In addition, strains of the two major clones in group II had an additional sequence, aliB-like ORF 1 (1,968 to 2,004 bp), upstream of aliB-like ORF 2. Expression of aliB-like ORF 1 was detected by reverse transcription-PCR, and the corresponding RNA was visualized by Northern blotting. A gene fragment homologous to capN of serotypes 33 and 37 suggests that group II strains were derived from encapsulated pneumococci some time ago. Therefore, loss of capsule expression in vivo was found to be associated with the importation of one or two aliB homologues in some nonencapsulated pneumococci.