3 resultados para Bacterial Physiological Phenomena.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on the endocrine role of estrogens has focused on the reproductive system, while other potential target systems have been less studied. Here, we investigated the possible immunomodulating role of 17beta-estradiol (E2) using rainbow trout (Oncorhynchus mykiss) as a model. The aims of the study were to examine a) whether estrogens can modulate immune gene transcription levels, and b) whether this has functional implications for the resistance of trout towards pathogens. Trout were reared from fertilization until 6 months of age under (1) control conditions, (2) short-term E2-treatment (6-month-old juveniles were fed a diet containing 20 mg E2/kg for 2 weeks), or c) long-term E2-treatment (twice a 2-h-bath-exposure of trout embryos to 400 mug 17beta-estradiol (E2)/L, followed by rearing on the E2-spiked diet from start-feeding until 6 months of age). Analysis of plasma estrogen levels indicated that the internal estrogen concentrations of E2-exposed fish were within the physiological range and analysis of hepatic vitellogenin mRNA levels indicated that the E2 administration was effective in activating the endogenous estrogen receptor pathway. However, expression levels of the hepatic complement components C3-1, C3-3, and Factor H were not affected by E2-treatment. In a next step, 6-month-old juveniles were challenged with pathogenic bacteria (Yersinia ruckeri). In control fish, this bacterial infection resulted in significant up-regulation of the mRNA levels of hepatic complement genes (C3-1, C3-3, Factor B, Factor H), while E2-treated fish showed no or significantly lower up-regulation of the complement gene transcription levels. Apparently, the E2-treated trout had a lower capacity to activate their immune system to defend against the bacterial infection. This interpretation is corroborated by the finding that survival of E2-treated fish under bacterial challenge was significantly lower than in the control group. In conclusion, the results from this study suggest that estrogens are able to modulate immune parameters of trout with functional consequences on their ability to cope with pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of advances in our understanding of the pathophysiology of bacterial meningitis have been made in recent years. In vivo studies have shown that bacterial cell wall fragments and endotoxins are highly active components, independent of the presence of viable bacteria in the subarachnoid space. Their presence in the cerebrospinal fluid is associated with the induction of inflammation and with the development of brain edema and increased intracranial pressure. Antimicrobial therapy may cause an additional increase of harmful bacterial products in the cerebrospinal fluid and thereby potentiate these pathophysiological alterations. These changes may contribute to the development of brain damage during meningitis. Some promising experimental work has been directed toward counteracting the above phenomena with non-steroidal or steroidal anti-inflammatory agents as well as with monoclonal antibodies. Although considerable advances have been made, further research needs to be done in these areas to improve the prognosis of bacterial meningitis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) are a family of Zn2+-dependent endopeptidases targeting extracellular matrix (ECM) compounds as well as a number of other proteins. Their proteolytic activity acts as an effector mechanism of tissue remodeling in physiologic and pathologic conditions, and as modulator of inflammation. In the context of neuro-inflammatory diseases, MMPs have been implicated in processes such as (a) blood-brain barrier (BBB) and blood-nerve barrier opening, (b) invasion of neural tissue by blood-derived immune cells, (c) shedding of cytokines and cytokine receptors, and (d) direct cellular damage in diseases of the peripheral and central nervous system. This review focuses on the role of MMPs in multiple sclerosis (MS) and bacterial meningitis (BM), two neuro-inflammatory diseases where current therapeutic approaches are insufficient to prevent severe disability in the majority of patients. Inhibition of enzymatic activity may prevent MMP-mediated neuronal damage due to an overactive or deviated immune response in both diseases. Downregulation of MMP release may be the molecular basis for the beneficial effect of IFN-beta and steroids in MS. Instead, synthetic MMP inhibitors offer the possibility to shut off enzymatic activity of already activated MMPs. In animal models of MS and BM, they efficiently attenuated clinical disease symptoms and prevented brain damage due to excessive metalloproteinase activity. However, the required target profile for the therapeutic use of this novel group of compounds in human disease is not yet sufficiently defined and may be different depending on the type and stage of disease. Currently available MMP inhibitors show little target-specificity within the MMP family and may lead to side-effects due to interference with physiological functions of MMPs. Results from human MS and BM indicate that only a restricted number of MMPs specific for each disease is up-regulated. MMP inhibitors with selective target profiles offer the possibility of a more efficient therapy of MS and BM and may enter clinical trials in the near future.