150 resultados para Bacterial Adenylate Cyclase
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The adenylate cyclase toxoid (ACT) of Bordetella pertussis is capable of delivering its N-terminal catalytic domain into the cytosol of CD11b-expressing professional antigen-presenting cells such as myeloid dendritic cells. This allows delivery of CD8+ T-cell epitopes to the major histocompatibility complex (MHC) class I presentation pathway. Recombinant detoxified ACT containing an epitope of the Plasmodium berghei circumsporozoite protein (CSP), indeed, induced a specific CD8+ T-cell response in immunized mice after a single application, as detected by MHC multimer staining and gamma interferon (IFN-gamma) ELISPOT assay. This CSP-specific response could be significantly enhanced by prime-boost immunization with recombinant ACT in combination with anti-CTLA-4 during the boost immunization. This increased response was accompanied by complete protection in a number of mice after a challenge with P. berghei sporozoites. Transient blockade of CTLA-4 may overcome negative regulation and hence provide a strategy to enhance the efficacy of a vaccine by amplifying the number of responding T cells.
Resumo:
Sterile immunity against malaria can be achieved by the induction of IFNgamma-producing CD8(+) T cells that target infected hepatocytes presenting epitopes of the circumsporozoite protein (CSP). In the present study we evaluate the protective efficacy of a heterologous prime/boost immunization protocol based on the delivery of the CD8(+) epitope of Plasmodium berghei CSP into the MHC class I presentation pathway, by either a type III secretion system of live recombinant Salmonella and/or by direct translocation of a recombinant Bordetella adenylate cyclase toxoid fusion (ACT-CSP) into the cytosol of professional antigen-presenting cells (APCs). A single intraperitoneal application of the recombinant ACT-CSP toxoid, as well as a single oral immunization with the Salmonella vaccine, induced a specific CD8(+) T cell response, which however conferred only a partial protection on mice against a subsequent sporozoite challenge. In contrast, a heterologous prime/boost vaccination with the live Salmonella followed by ACT-CSP led to a significant enhancement of the CSP-specific T cell response and induced complete protection in all vaccinated mice.
Resumo:
Regulatory T cells (T(reg)) have been shown to restrict vaccine-induced T cell responses in different experimental models. In these studies CD4(+)CD25(+) T(reg) were depleted using monoclonal antibodies against CD25, which might also interfere with CD25 on non-regulatory T cell populations and would have no effect on Foxp3(+)CD25(-) T(reg). To obtain more insights in the specific function of T(reg) during vaccination we used mice that are transgenic for a bacterial artificial chromosome expressing a diphtheria toxin (DT) receptor-eGFP fusion protein under the control of the foxp3 gene locus (depletion of regulatory T cell mice; DEREG). As an experimental vaccine-carrier recombinant Bordetella adenylate cyclase toxoid fused with a MHC-class I-restricted epitope of the circumsporozoite protein (ACT-CSP) of Plasmodium berghei (Pb) was used. ACT-CSP was shown by us previously to introduce the CD8+ epitope of Pb-CSP into the MHC class I presentation pathway of professional antigen-presenting cells (APC). Using this system we demonstrate here that the number of CSP-specific T cells increases when T(reg) are depleted during prime but also during boost immunization. Importantly, despite this increase of T effector cells no difference in the number of antigen-specific memory cells was observed.
Resumo:
Expression of connective tissue growth factor (CTGF), a member of the CCN gene family, is known to be significantly induced by mechanical stress. We have therefore investigated whether other members of the CCN gene family, including Cyr61 and Nov, might reveal a similar stress-dependent regulation. Fibroblasts growing under stressed conditions within a three-dimensional collagen gel showed at least a 15 times higher level of Cyr61 mRNA than cells growing under relaxed conditions. Upon relaxation, the decline of the Cyr61 mRNA to a lower level occurred within 2 h, and was thus quicker than the response of CTGF. The regulation was fully reversible when stress was reapplied. Thus, Cyr61 represents another typical example of a stress-responsive gene. The level of the Nov mRNA was low in the stressed state, but increased in the relaxed state. This CCN gene therefore shows an inverted regulation relative to that of Cyr61 and CTGF. Inhibition of protein kinases by means of staurosporine suppressed the stress-induced expression of Cyr61 and CTGF. Elevated levels of cAMP induced by forskolin mimicked the effects of relaxation on the regulation of Cyr61, CTGF and Nov. Thus, adenylate cyclase as well as one or several protein kinases might be involved in the mechanoregulation of these CCN genes.
Resumo:
Distinct glial cell types of the vertebrate peripheral nervous system (PNS) are derived from the neural crest. Here we show that the expression of the Ets domain transcription factor Erm distinguishes satellite glia from Schwann cells beginning early in rat PNS development. In developing dorsal root ganglia (DRG), Erm is present both in presumptive satellite glia and in neurons. In contrast, Erm is not detectable at any developmental stage in Schwann cells in peripheral nerves. In addition, Erm is downregulated in DRG-derived glia adopting Schwann cell traits in culture. Thus, Erm is the first described transcription factor expressed in satellite glia but not in Schwann cells. In culture, the Neuregulin1 (NRG1) isoform GGF2 maintains Erm expression in presumptive satellite cells and reinduces Erm expression in DRG-derived glia but not in Schwann cells from sciatic nerve. These data demonstrate that there are intrinsic differences between these glial subtypes in their response to NRG1 signaling. In neural crest cultures, Erm-positive progenitor cells give rise to two distinct glial subtypes: Erm-positive, Oct-6-negative satellite glia in response to GGF2, and Erm-negative, Oct-6-positive Schwann cells in the presence of serum and the adenylate cyclase activator forskolin. Thus, Erm-positive neural crest-derived progenitor cells and presumptive satellite glia are able to acquire Schwann cell features. Given the in vivo expression of Erm in peripheral ganglia, we suggest that ganglionic Erm-positive cells may be precursors of Schwann cells.
Resumo:
The loss of soluble brain antioxidants and protective effects of radical scavengers implicate reactive oxygen species in cortical neuronal injury caused by bacterial meningitis. However, the lack of significant oxidative damage in cortex [J. Neuropathol. Exp. Neurol. 61 (2002) 605-613] suggests that cortical neuronal injury may not be due to excessive parenchymal oxidant production. To see whether this tissue region exhibits a prooxidant state in bacterial meningitis, we examined the state of the major cortical antioxidant defenses in infant rats infected with Streptococcus pneumoniae. Adenine nucleotides were co-determined to assess possible changes in energy metabolism. Arguing against heightened parenchymal oxidant production, the high NADPH/NADP(+) ratio ( approximately 3:1) and activities of the major antioxidant defense and pentose phosphate pathway enzymes remained unchanged at the time of fulminant meningitis. In contrast, cortical ATP, ADP and total adenine nucleotides were on average decreased by approximately 25%. However, energy depletion did not lead to a significant decrease in adenylate energy charge (AEC). ATP depletion was likely a consequence of metabolic degradation, since it correlated with both the loss of total adenine nucleotides and accumulation of purine degradation products. Furthermore, the loss of ATP and decrease in AEC correlated significantly with the extent of neuronal injury. These results strongly suggest that energy depletion rather than parenchymal oxidative damage is involved in the observed cortical neuronal injury.
Resumo:
Surface platforms were engineered from poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL-g-PMOXA) copolymers to study the mechanisms involved in the non-specific adhesion of Escherichia coli (E. coli) bacteria. Copolymers with three different grafting densities (PMOXA chains/Lysine residue of 0.09, 0.33 and 0.56) were synthesized and assembled on niobia (Nb O ) surfaces. PLL-modified and bare niobia surfaces served as controls. To evaluate the impact of fimbriae expression on the bacterial adhesion, the surfaces were exposed to genetically engineered E. coli strains either lacking, or constitutively expressing type 1 fimbriae. The bacterial adhesion was strongly influenced by the presence of bacterial fimbriae. Non-fimbriated bacteria behaved like hard, charged particles whose adhesion was dependent on surface charge and ionic strength of the media. In contrast, bacteria expressing type 1 fimbriae adhered to the substrates independent of surface charge and ionic strength, and adhesion was mediated by non-specific van der Waals and hydrophobic interactions of the proteins at the fimbrial tip. Adsorbed polymer mass, average surface density of the PMOXA chains, and thickness of the copolymer films were quantified by optical waveguide lightmode spectroscopy (OWLS) and variable-angle spectroscopic ellipsometry (VASE), whereas the lateral homogeneity was probed by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Streaming current measurements provided information on the charge formation of the polymer-coated and the bare niobia surfaces. The adhesion of both bacterial strains could be efficiently inhibited by the copolymer film only with a grafting density of 0.33 characterized by the highest PMOXA chain surface density and a surface potential close to zero.
Resumo:
In patients with cirrhosis, bacterial DNA has been found in ascites reflecting bacterial translocation. However, the clinical relevance of this finding is ill-defined especially compared with the standard diagnostics for detection of spontaneous bacterial peritonitis (SBP). Furthermore, other DNA tests have not been sufficiently evaluated.
Resumo:
Bacterial contamination of endoscopy suites is of concern; however studies evaluating bacterial aerosols are lacking. We aimed to determine the effectiveness of air suctioning during removal of biopsy forceps in reducing bacterial air contamination.
Resumo:
Electrophysiological cardiac devices are increasingly used. The frequency of subclinical infection is unknown. We investigated all explanted devices using sonication, a method for detection of microbial biofilms on foreign bodies.
Resumo:
Background Identifying modifiable factors that increase women's vulnerability to HIV is a critical step in developing effective female-initiated prevention interventions. The primary objective of this study was to pool individual participant data from prospective longitudinal studies to investigate the association between intravaginal practices and acquisition of HIV infection among women in sub-Saharan Africa. Secondary objectives were to investigate associations between intravaginal practices and disrupted vaginal flora; and between disrupted vaginal flora and HIV acquisition. Methods and Findings We conducted a meta-analysis of individual participant data from 13 prospective cohort studies involving 14,874 women, of whom 791 acquired HIV infection during 21,218 woman years of follow-up. Data were pooled using random-effects meta-analysis. The level of between-study heterogeneity was low in all analyses (I2 values 0.0%–16.1%). Intravaginal use of cloth or paper (pooled adjusted hazard ratio [aHR] 1.47, 95% confidence interval [CI] 1.18–1.83), insertion of products to dry or tighten the vagina (aHR 1.31, 95% CI 1.00–1.71), and intravaginal cleaning with soap (aHR 1.24, 95% CI 1.01–1.53) remained associated with HIV acquisition after controlling for age, marital status, and number of sex partners in the past 3 months. Intravaginal cleaning with soap was also associated with the development of intermediate vaginal flora and bacterial vaginosis in women with normal vaginal flora at baseline (pooled adjusted odds ratio [OR] 1.24, 95% CI 1.04–1.47). Use of cloth or paper was not associated with the development of disrupted vaginal flora. Intermediate vaginal flora and bacterial vaginosis were each associated with HIV acquisition in multivariable models when measured at baseline (aHR 1.54 and 1.69, p<0.001) or at the visit before the estimated date of HIV infection (aHR 1.41 and 1.53, p<0.001), respectively. Conclusions This study provides evidence to suggest that some intravaginal practices increase the risk of HIV acquisition but a direct causal pathway linking intravaginal cleaning with soap, disruption of vaginal flora, and HIV acquisition has not yet been demonstrated. More consistency in the definition and measurement of specific intravaginal practices is warranted so that the effects of specific intravaginal practices and products can be further elucidated.
Resumo:
Ethyl glucuronide (EtG) and ethyl sulfate (EtS) are direct alcohol consumption markers widely used nowadays for clinical and forensic applications. They are detectable in blood and urine even after consumption of trace amounts of ethanol and for a longer time frame, being detectable even when no more ethanol is present. The instability of EtG against bacterial degradation in contaminated urine samples and/or the possible postcollection synthesis of this metabolite in samples containing, e.g., Escherichia coli and ethanol, may cause false identification of alcohol uptake. Therefore, it is of paramount importance to constrict these error sources by inhibition of any bacterial growth causing hydrolization or synthesis of EtG. This study evaluates a new method of collecting urine samples on filter paper, dried urine spots (DUS), for simultaneous detection of EtG, EtS and creatinine, having the great advantage of inhibiting bacterial activity. In addition, a method validation for the determination of EtG and EtS in DUS was performed according to the FDA guidelines. Sterile-filtered urine was spiked with EtG and EtS, inoculated with E. coli and incubated. Liquid and dried urine samples were collected after various time intervals up to 96 h. Liquid samples were frozen immediately after collection, whereas aliquots for DUS were pipetted onto filter paper, allowed to dry and stored at RT until analysis 1 week after. The specimens were analyzed by LC-ESI-MS/MS. As expected, degradation of EtG, but not of EtS, was observed in contaminated liquid urine samples. However, the specimens collected on filter paper and stored at RT showed no degradation during storage. Therefore, collecting urine samples on filter paper for EtG and EtS analysis turns out to be a reliable method to avoid bacterial degradation of EtG and EtS, and consequently, stabilization of these ethanol metabolites is achieved. In addition, simultaneous measurement of creatinine content as an indicator of urine dilution helps to interpret the results. Method validation for EtG and EtS in DUS was satisfactory, showing the linearity of the calibration curves in the studied concentration range, good precision, accuracy and selectivity.
Resumo:
In the next Swiss National HIV and Sexually Transmitted Infection (STI) Strategy 2011-2017, STI control will be integrated with HIV prevention. Information is needed which will improve the targeting of professional education. The objective of this study was to describe the clinical specialities and settings to which patients with bacterial STI present in Switzerland.
Resumo:
The urea cycle defect argininosuccinate lyase (ASL) deficiency has a large spectrum of presentations from highly severe to asymptomatic. Enzyme activity assays in red blood cells or fibroblasts, although diagnostic of the deficiency, fail to discriminate between severe, mild or asymptomatic cases. Mutation/phenotype correlation studies are needed to characterize the effects of individual mutations on the activity of the enzyme.