28 resultados para Backtrack programming.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
When healthy observers make a saccade that is erroneously directed toward a distracter stimulus, they often produce a corrective saccade within 100ms after the end of the primary saccade. Such short inter-saccadic intervals indicate that programming of the secondary saccade has been initiated prior to the execution of the primary saccade and hence that the two saccades have been programmed concurrently. Here we show that concurrent saccade programming is bilaterally impaired in left spatial neglect, a strongly lateralized disorder of visual attention resulting from extensive right cerebral damage. Neglect patients were asked to make saccades to targets presented left or right of fixation while disregarding a distracter presented in the opposite hemifield. We examined those experimental trials on which participants first made a saccade to the distracter, followed by a secondary (corrective) saccade to the target. Compared to healthy and right-hemisphere damaged control participants the proportion of secondary saccades directing gaze to the target instead of bringing it even closer to the distracter was bilaterally reduced in neglect patients. In addition, the characteristic reduction of secondary saccade latency observed in both control groups was absent in neglect patients, whether the secondary saccade was directed to the left or right hemifield. This pattern is consistent with a severe, bilateral impairment of concurrent saccade programming in left spatial neglect.
Knowing the future: partial foreknowledge effects on the programming of prosaccades and antisaccades
Resumo:
Foreknowledge about the demands of an upcoming trial may be exploited to optimize behavioural responses. In the current study we systematically investigated the benefits of partial foreknowledge--that is, when some but not all aspects of a future trial are known in advance. For this we used an ocular motor paradigm with horizontal prosaccades and antisaccades. Predictable sequences were used to create three partial foreknowledge conditions: one with foreknowledge about the stimulus location only, one with foreknowledge about the task set only, and one with foreknowledge about the direction of the required response only. These were contrasted with a condition of no-foreknowledge and a condition of complete foreknowledge about all three parameters. The results showed that the three types of foreknowledge affected saccadic efficiency differently. While foreknowledge about stimulus-location had no effect on efficiency, task foreknowledge had some effect and response-foreknowledge was as effective as complete foreknowledge. Foreknowledge effects on switch costs followed a similar pattern in general, but were not specific for switching of the trial attribute for which foreknowledge was available. We conclude that partial foreknowledge has a differential effect on efficiency, most consistent with preparatory activation of a motor schema in advance of the stimulus, with consequent benefits for both switched and repeated trials.
Resumo:
The historical context in which saccades are made influences their latency and error rates, but less is known about how context influences their spatial parameters. We recently described a novel spatial bias for antisaccades, in which the endpoints of these responses deviate towards alternative goal locations used in the same experimental block, and showed that expectancy (prior probability) is at least partly responsible for this 'alternate-goal bias'. In this report we asked whether trial history also plays a role. Subjects performed antisaccades to a stimulus randomly located on the horizontal meridian, on a 40° angle downwards from the horizontal meridian, or on a 40° upward angle, with all three locations equally probable on any given trial. We found that the endpoints of antisaccades were significantly displaced towards the goal location of not only the immediately preceding trial (n - 1) but also the penultimate (n - 2) trial. Furthermore, this bias was mainly present for antisaccades with a short latency of <250 ms and was rapidly corrected by secondary saccades. We conclude that the location of recent antisaccades biases the spatial programming of upcoming antisaccades, that this historical effect persists over many seconds, and that it influences mainly rapidly generated eye movements. Because corrective saccades eliminate the historical bias, we suggest that the bias arises in processes generating the response vector, rather than processes generating the perceptual estimate of goal location.
Resumo:
There exists an association between pathologic events occurring during early life and the development of cardiovascular disease in adulthood. For example, transient perinatal hypoxemia predisposes to exaggerated hypoxic pulmonary hypertension and preeclampsia predisposes the offspring to pulmonary and systemic endothelial dysfunction later in life. The latter finding offers a scientific basis for observations demonstrating an increased risk for premature cardiovascular morbidity in this population. Very recently, we showed that offspring of assisted reproductive technologies also display generalized vascular dysfunction and early arteriosclerosis. Studies in animal models have provided evidence that oxidative stress and/or epigenetic alterations play an important pathophysiological role in the fetal programming of cardiovascular disease.
Resumo:
High altitude constitutes an exciting natural laboratory for medical research. While initially, the aim of high-altitude research was to understand the adaptation of the organism to hypoxia and find treatments for altitude-related diseases, over the past decade or so, the scope of this research has broadened considerably. Two important observations led to the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema (HAPE) represents a unique model which allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Secondly, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.
Resumo:
Context-dependent behavior is becoming increasingly important for a wide range of application domains, from pervasive computing to common business applications. Unfortunately, mainstream programming languages do not provide mechanisms that enable software entities to adapt their behavior dynamically to the current execution context. This leads developers to adopt convoluted designs to achieve the necessary runtime flexibility. We propose a new programming technique called Context-oriented Programming (COP) which addresses this problem. COP treats context explicitly, and provides mechanisms to dynamically adapt behavior in reaction to changes in context, even after system deployment at runtime. In this paper we lay the foundations of COP, show how dynamic layer activation enables multi-dimensional dispatch, illustrate the application of COP by examples in several language extensions, and demonstrate that COP is largely independent of other commitments to programming style.
Resumo:
Insults during the fetal period predispose the offspring to systemic cardiovascular disease, but little is known about the pulmonary circulation and the underlying mechanisms. Maternal undernutrition during pregnancy may represent a model to investigate underlying mechanisms, because it is associated with systemic vascular dysfunction in the offspring in animals and humans. In rats, restrictive diet during pregnancy (RDP) increases oxidative stress in the placenta. Oxygen species are known to induce epigenetic alterations and may cross the placental barrier. We hypothesized that RDP in mice induces pulmonary vascular dysfunction in the offspring that is related to an epigenetic mechanism. To test this hypothesis, we assessed pulmonary vascular function and lung DNA methylation in offspring of RDP and in control mice at the end of a 2-wk exposure to hypoxia. We found that endothelium-dependent pulmonary artery vasodilation in vitro was impaired and hypoxia-induced pulmonary hypertension and right ventricular hypertrophy in vivo were exaggerated in offspring of RDP. This pulmonary vascular dysfunction was associated with altered lung DNA methylation. Administration of the histone deacetylase inhibitors butyrate and trichostatin A to offspring of RDP normalized pulmonary DNA methylation and vascular function. Finally, administration of the nitroxide Tempol to the mother during RDP prevented vascular dysfunction and dysmethylation in the offspring. These findings demonstrate that in mice undernutrition during gestation induces pulmonary vascular dysfunction in the offspring by an epigenetic mechanism. A similar mechanism may be involved in the fetal programming of vascular dysfunction in humans.