22 resultados para Babar, hadrons, ISR, g-2
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Recently, it was shown that insertions of hadronic vacuum polarization at O(α4) generate non-negligible effects in the calculation of the anomalous magnetic moment of the muon. This result raises the question if other hadronic diagrams at this order might become relevant for the next round of g−2 measurements as well. In this note we show that a potentially enhanced such contribution, hadronic light-by-light scattering in combination with electron vacuum polarization, is already sufficiently suppressed.
Resumo:
The largest uncertainties in the Standard Model calculation of the anomalous magnetic moment of the muon (g − 2)μ come from hadronic contributions. In particular, it can be expected that in a few years the subleading hadronic light-by-light (HLbL) contribution will dominate the theory uncertainty. We present a dispersive description of the HLbL tensor, which is based on unitarity, analyticity, crossing symmetry, and gauge invariance. Such a model-independent Approach opens up an avenue towards a data-driven determination of the HLbL contribution to the (g − 2)μ.
Resumo:
OBJECTIVES This study sought to assess the clinical safety and effectiveness of the Resolute zotarolimus-eluting stent (R-ZES) in patients with in-stent restenosis (ISR) from 2 large trials. BACKGROUND ISR treatment is associated with higher rates of subsequent cardiac events compared with treatment of de novo lesions. Although drug-eluting stents (DES) are an option, second-generation DES are largely untested in the treatment of ISR. METHODS A total of 3,489 patients were pooled from the RAC (RESOLUTE All Comers) trial and the RESOLUTE International (RINT) registry. Two-year clinical endpoints included clinically driven target lesion revascularization (TLR), target lesion failure (TLF), cardiac death (CD), target vessel myocardial infarction (TVMI), combined CD or TVMI (CD/TVMI), and Academic Research Consortium definite and probable stent thrombosis (ST). RESULTS Overall, 281 patients (8.1%) received an R-ZES for ISR. Two-year TLR and TLF rates were significantly higher in ISR patients than in non-ISR patients (TLR: 12.7% vs. 4.3%, p = 0.003; TLF: 17.4% vs. 9.4%, p = 0.007); however, the CD/TVMI rate was not (6.9% vs. 6.1%, p = 0.711). Seven ISR patients had ST. Two-year outcomes by ISR stent type were similar: bare-metal stent (BMS)-ISR TLR was 12.5% and TLF was 17.2%; DES-ISR TLR was 13.0% and TLF was 18.8%. CD/TVMI was 7.3% and 7.2% for BMS-ISR and DES-ISR, respectively. CONCLUSIONS Using R-ZES to treat ISR appears equally safe in BMS-ISR and DES-ISR, with CD/TVMI rates comparable to 2-year outcomes in other clinical trials. Although revascularization rates are still higher in ISR lesions, the R-ZES offers an effective alternative for treatment of BMS-ISR and DES-ISR. (Randomized, Two-Arm, Non-inferiority Study Comparing Endeavor-Resolute Stent With Abbot Xience-V Stent [RESOLUTE-AC]; NCT00617084; and RESOLUTE International Registry: Evaluation of the Resolute Zotarolimus-Eluting Stent System in a 'Real-World' Patient Population [RINT]; NCT00752128).
Resumo:
The numerical simulations of the magnetic properties of extended three-dimensional networks containing M(II) ions with an S = 5/2 ground-state spin have been carried out within the framework of the isotropic Heisenberg model. Analytical expressions fitting the numerical simulations for the primitive cubic, diamond, together with (10−3) cubic networks have all been derived. With these empirical formulas in hands, we can now extract the interaction between the magnetic ions from the experimental data for these networks. In the case of the primitive cubic network, these expressions are directly compared with those from the high-temperature expansions of the partition function. A fit of the experimental data for three complexes, namely [(N(CH3)4][Mn(N3)] 1, [Mn(CN4)]n 2, and [FeII(bipy)3][MnII2(ox)3] 3, has been carried out. The best fits were those obtained using the following parameters, J = −3.5 cm-1, g = 2.01 (1); J = −8.3 cm-1, g = 1.95 (2); and J = −2.0 cm-1, g = 1.95 (3).
Resumo:
This paper presents a new approach for reconstructing a patient-specific shape model and internal relative intensity distribution of the proximal femur from a limited number (e.g., 2) of calibrated C-arm images or X-ray radiographs. Our approach uses independent shape and appearance models that are learned from a set of training data to encode the a priori information about the proximal femur. An intensity-based non-rigid 2D-3D registration algorithm is then proposed to deformably fit the learned models to the input images. The fitting is conducted iteratively by minimizing the dissimilarity between the input images and the associated digitally reconstructed radiographs of the learned models together with regularization terms encoding the strain energy of the forward deformation and the smoothness of the inverse deformation. Comprehensive experiments conducted on images of cadaveric femurs and on clinical datasets demonstrate the efficacy of the present approach.
Resumo:
Background: Voltage-gated sodium channels dysregulation is important for hyperexcitability leading to pain persistence. Sodium channel blockers currently used to treat neuropathic pain are poorly tolerated. Getting new molecules to clinical use is laborious. We here propose a drug already marketed as anticonvulsant, rufinamide. Methods: We compared the behavioral effect of rufinamide to amitriptyline using the Spared Nerve Injury neuropathic pain model in mice. We compared the effect of rufinamide on sodium currents using in vitro patch clamp in cells expressing the voltage-gated sodium channel Nav1.7 isoform and on dissociated dorsal root ganglion neurons to amitriptyline and mexiletine. Results: In naive mice, amitriptyline (20 mg/kg) increased withdrawal threshold to mechanical stimulation from 1.3 (0.6–1.9) (median [95% CI]) to 2.3 g (2.2–2.5) and latency of withdrawal to heat stimulation from 13.1 (10.4–15.5) to 30.0 s (21.8–31.9), whereas rufinamide had no effect. Rufinamide and amitriptyline alleviated injury-induced mechanical allodynia for 4 h (maximal effect: 0.10 ± 0.03 g (mean ± SD) to 1.99 ± 0.26 g for rufinamide and 0.25 ± 0.22 g to 1.92 ± 0.85 g for amitriptyline). All drugs reduced peak current and stabilized the inactivated state of voltage-gated sodium channel Nav1.7, with similar effects in dorsal root ganglion neurons. Conclusions: At doses alleviating neuropathic pain, amitriptyline showed alteration of behavioral response possibly related to either alteration of basal pain sensitivity or sedative effect or both. Side-effects and drug tolerance/compliance are major problems with drugs such as amitriptyline. Rufinamide seems to have a better tolerability profile and could be a new alternative to explore for the treatment of neuropathic pain.
Resumo:
Similarity measure is one of the main factors that affect the accuracy of intensity-based 2D/3D registration of X-ray fluoroscopy to CT images. Information theory has been used to derive similarity measure for image registration leading to the introduction of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measure only takes intensity values into account without considering spatial information and its robustness is questionable. Previous attempt to incorporate spatial information into mutual information either requires computing the entropy of higher dimensional probability distributions, or is not robust to outliers. In this paper, we show how to incorporate spatial information into mutual information without suffering from these problems. Using a variational approximation derived from the Kullback-Leibler bound, spatial information can be effectively incorporated into mutual information via energy minimization. The resulting similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experimental results are presented on datasets of two applications: (a) intra-operative patient pose estimation from a few (e.g. 2) calibrated fluoroscopic images, and (b) post-operative cup alignment estimation from single X-ray radiograph with gonadal shielding.
Resumo:
We present SUSY_FLAVOR version 2 — a Fortran 77 program that calculates low-energy flavor observables in the general R-parity conserving MSSM. For a set of MSSM parameters as input, the code gives predictions for: 1. Electric dipole moments of the leptons and the neutron. 2. Anomalous magnetic moments (i.e. g − 2) of the leptons. 3. Radiative lepton decays (μ → eγ and τ → μγ , eγ ). 4. Rare Kaon decays (K0 L → π0 ¯νν and K+ → π+ ¯νν). 5. Leptonic B decays (Bs,d → l+l−, B → τ ν and B → Dτ ν). 6. Radiative B decays (B → ¯ Xsγ ). 7. ΔF = 2 processes ( ¯ K0–K0, ¯D–D, ¯Bd–Bd and ¯Bs–Bs mixing). Comparing to SUSY_FLAVOR v1, where the matching conditions were calculated strictly at one-loop level, SUSY_FLAVOR v2 performs the resummation of all chirally enhanced corrections, i.e. takes into account the enhanced effects from tan β and/or large trilinear soft mixing terms to all orders in perturbation theory. Also, in SUSY_FLAVOR v2 new routines calculation of B → (D)τ ν, g − 2, radiative lepton decays and Br(l → l′γ ) were added. All calculations are done using exact diagonalization of the sfermion mass matrices. The program can be obtained from http://www.fuw.edu.pl/susy_flavor.
Resumo:
The production rate of right-handed neutrinos from a Standard Model plasma at a temperature above a hundred GeV has previously been evaluated up to NLO in Standard Model couplings (g ~ 2/3) in relativistic (M ~ πT) and non-relativistic regimes (M ≫ πT), and up to LO in an ultrarelativistic regime (M ≲ gT). The last result necessitates an all-orders resummation of the loop expansion, accounting for multiple soft scatterings of the nearly light-like particles participating in 1↔2 reactions. In this paper we suggest how the regimes can be interpolated into a result applicable for any right-handed neutrino mass and at all temperatures above 160GeV. The results can also be used for determining the lepton number washout rate in models containing right-handed neutrinos. Numerical results are given in a tabulated form permitting for their incorporation into leptogenesis codes. We note that due to effects from soft Higgs bosons there is a narrow intermediate regime around M ~g 1/2 T in which our interpolation is phenomenological and a more precise study would be welcome.
Resumo:
While the influence of spatial-numerical associations in number categorization tasks has been well established, their role in mental arithmetic is less clear. It has been hypothesized that mental addition leads to rightward and upward shifts of spatial attention (along the “mental number line”), whereas subtraction leads to leftward and downward shifts. We addressed this hypothesis by analyzing spontaneous eye movements during mental arithmetic. Participants solved verbally presented arithmetic problems (e.g., 2 + 7, 8–3) aloud while looking at a blank screen. We found that eye movements reflected spatial biases in the ongoing mental operation: Gaze position shifted more upward when participants solved addition compared to subtraction problems, and the horizontal gaze position was partly determined by the magnitude of the operands. Interestingly, the difference between addition and subtraction trials was driven by the operator (plus vs. minus) but was not influenced by the computational process. Thus, our results do not support the idea of a mental movement toward the solution during arithmetic but indicate a semantic association between operation and space.
Resumo:
New coordination polymers [M(Pht)(4-MeIm)2(H2O)]n (M=Co (1), Cu (2); Pht2−=dianion of o-phthalic acid; 4-MeIm=4-methylimidazole) have been synthesized and characterized by IR spectroscopy, X-ray crystallography, thermogravimetric analysis and magnetic measurements. The crystal structures of 1 and 2 are isostructural and consist of [M(4-MeIm)2(H2O)] building units linked in infinite 1D helical chains by 1,6-bridging phthalate ions which also act as chelating ligands through two O atoms from one carboxylate group in the case of 1. In complex 1, each Co(II) atom adopts a distorted octahedral N2O4 geometry being coordinated by two N atoms from two 4-MeIm, three O atoms of two phthalate residues and one O atom of a water molecule, whereas the square-pyramidal N2O3 coordination of the Cu(II) atom in 2 includes two N atoms of N-containing ligands, two O atoms of two carboxylate groups from different Pht, and a water molecule. An additional strong O–H⋯O hydrogen bond between a carboxylate group of the phthalate ligand and a coordinated water molecule join the 1D helical chains to form a 2D network in both compounds. The thermal dependences of the magnetic susceptibilities of the polymeric helical Co(II) chain compound 1 were simulated within the temperature range 20–300 K as a single ion case, whereas for the Cu(II) compound 2, the simulations between 25 and 300 K, were made for a linear chain using the Bonner–Fisher approximation. Modelling the experimental data of compound 1 with MAGPACK resulted in: g=2.6, |D|=62 cm−1. Calculations using the Bonner–Fisher approximation gave the following result for compound 2: g=2.18, J=–0.4 cm−1.
Resumo:
In this paper we make a further step towards a dispersive description of the hadronic light-by-light (HLbL) tensor, which should ultimately lead to a data-driven evaluation of its contribution to (g − 2) μ . We first provide a Lorentz decomposition of the HLbL tensor performed according to the general recipe by Bardeen, Tung, and Tarrach, generalizing and extending our previous approach, which was constructed in terms of a basis of helicity amplitudes. Such a tensor decomposition has several advantages: the role of gauge invariance and crossing symmetry becomes fully transparent; the scalar coefficient functions are free of kinematic singularities and zeros, and thus fulfill a Mandelstam double-dispersive representation; and the explicit relation for the HLbL contribution to (g − 2) μ in terms of the coefficient functions simplifies substantially. We demonstrate explicitly that the dispersive approach defines both the pion-pole and the pion-loop contribution unambiguously and in a model-independent way. The pion loop, dispersively defined as pion-box topology, is proven to coincide exactly with the one-loop scalar QED amplitude, multiplied by the appropriate pion vector form factors.