5 resultados para BURNETII
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The recent Q fever epidemic in the Netherlands raised concerns about the potential risk of outbreaks in other European countries. In Switzerland, the prevalence of Q fever in animals and humans has not been studied in recent years. In this study, we describe the current situation with respect to Coxiella (C.) burnetii infections in small ruminants and humans in Switzerland, as a basis for future epidemiological investigations and public health risk assessments. Specific objectives of this cross-sectional study were to (i) estimate the seroprevalence of C. burnetii in sheep and goats, (ii) quantify the amount of bacteria shed during abortion and (iii) analyse temporal trends in human C. burnetii infections. The seroprevalence of C. burnetii in small ruminants was determined by commercial ELISA from a representative sample of 100 sheep flocks and 72 goat herds. Herd-level seroprevalence was 5.0% (95% CI: 1.6-11.3) for sheep and 11.1% (95% CI: 4.9-20.7) for goats. Animal-level seroprevalence was 1.8% (95% CI: 0.8-3.4) for sheep and 3.4% (95% CI: 1.7-6) for goats. The quantification of C. burnetii in 97 ovine and caprine abortion samples by real-time PCR indicated shedding of >10(4) bacteria/g in 13.4% of all samples tested. To our knowledge, this is the first study reporting C. burnetii quantities in a large number of small ruminant abortion samples. Annual human Q fever serology data were provided by five major Swiss laboratories. Overall, seroprevalence in humans ranged between 1.7% and 3.5% from 2007 to 2011, and no temporal trends were observed. Interestingly, the two laboratories with significantly higher seroprevalences are located in the regions with the largest goat populations as well as, for one laboratory, with the highest livestock density in Switzerland. However, a direct link between animal and human infection data could not be established in this study.
Resumo:
In the early 2000s, several colonies of Alpine ibex (Capra ibex ibex) in Switzerland ceased growing or began to decrease. Reproductive problems clue to infections with abortive agents might have negatively affected recruitment. We assessed the presence of selected agents of abortion in Alpine ibex by serologic, molecular, and culture techniques and evaluated whether infection with these agents might have affected population densities. Blood and fecal samples were collected from 651 ibex in 14 colonies throughout the Swiss Alps between 2006 and 2008. All samples were negative for Salmonella. spp., Neospora caninum, and Bovine Herpesvirus-1. Antibodies to Coxiella burnetii, Leptospira spp., Chlamydophila abortus, Toxoplasma gondii, and Bovine Viral Diarrhea virus were detected in at least one ibex. Positive serologic results for Brucella spp. likely were false. Overall, 73 samples (11.2%) were antibody-positive for at least one abortive agent. Prevalence was highest for Leptospira spp. (7.9%, 95% CI=5.0-11.7). The low prevalences and the absence of significant differences between colonies with opposite population trends suggest these pathogens do not play a significant role in the population dynamics of Swiss ibex. Alpine ibex do not seem to be a reservoir for these abortive agents or an important source of infection for domestic livestock in Switzerland. Finally, although interactions on summer pastures occur frequently, spillover from infected livestock to free-ranging ibex apparently is uncommon.
Resumo:
BACKGROUND: Although brucellosis (Brucella spp.) and Q Fever (Coxiella burnetii) are zoonoses of global importance, very little high quality data are available from West Africa. METHODS/PRINCIPAL FINDINGS: A serosurvey was conducted in Togo's main livestock-raising zone in 2011 in 25 randomly selected villages, including 683 people, 596 cattle, 465 sheep and 221 goats. Additionally, 464 transhumant cattle from Burkina Faso were sampled in 2012. The serological analyses performed were the Rose Bengal Test and ELISA for brucellosis and ELISA and the immunofluorescence assay (IFA) for Q Fever Brucellosis did not appear to pose a major human health problem in the study zone, with only 7 seropositive participants. B. abortus was isolated from 3 bovine hygroma samples, and is likely to be the predominant circulating strain. This may explain the observed seropositivity amongst village cattle (9.2%, 95%CI:4.3-18.6%) and transhumant cattle (7.3%, 95%CI:3.5-14.7%), with an absence of seropositive small ruminants. Exposure of livestock and people to C. burnetii was common, potentially influenced by cultural factors. People of Fulani ethnicity had greater livestock contact and a significantly higher seroprevalence than other ethnic groups (Fulani: 45.5%, 95%CI:37.7-53.6%; non-Fulani: 27.1%, 95%CI:20.6-34.7%). Appropriate diagnostic test cut-off values in endemic settings requires further investigation. Both brucellosis and Q Fever appeared to impact on livestock production. Seropositive cows were more likely to have aborted a foetus during the previous year than seronegative cows, when adjusted for age. This odds was 3.8 times higher (95%CI: 1.2-12.1) for brucellosis and 6.7 times higher (95%CI: 1.3-34.8) for Q Fever. CONCLUSIONS: This is the first epidemiological study of zoonoses in Togo in linked human and animal populations, providing much needed data for West Africa. Exposure to Brucella and C. burnetii is common but further research is needed into the clinical and economic impact.
Resumo:
Coxiella burnetii infection (Q fever) is a widespread zoonosis with low endemicity in Switzerland, therefore no mandatory public report was required. A cluster of initially ten human cases of acute Q fever infections characterized by prolonged fever, asthenia and mild hepatitis occurred in 2012 in the terraced vineyard of Lavaux. Epidemiological investigations based on patients' interviews and veterinary investigations included environmental sampling as well as Coxiella-specific serological assay and molecular examinations (real-time PCR in vaginal secretions) of suspected sheep. These investigations demonstrated that 43% of sheep carried the bacteria whereas 30% exhibited anti-Coxiella antibodies. Mitigation measures, including limiting human contacts with the flock, hygiene measures, flock vaccination and a public official alert, have permitted the detection of four additional human cases and the avoidance of a much larger outbreak. Since November 2012, mandatory reporting of Q fever to Swiss public health authorities has been reintroduced. A close follow up of human cases will be necessary to identify chronic Q fever.
Resumo:
Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host–pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans.