4 resultados para BTH

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical plant strengtheners find increasing use in agriculture to enhance resistance against pathogens. In an earlier study, it was found that treatment with one such resistance elicitor, BTH (benzo-(1, 2, 3)-thiadiazole-7-carbothioic acid S-methyl ester), increases the attractiveness of maize plants to a parasitic wasp. This surprising additional benefit of treating plants with BTH prompted us to conduct a series of olfactometer tests to find out if BTH and another commercially available plant strengthener, Laminarin, increase the attractiveness of maize to three important parasitic wasps, Cotesia marginventris, Campoletis sonorensis, and Microplitis rufiventris. In each case, plants that were sprayed with the plant strengtheners and subsequently induced to release volatiles by real or mimicked attack by Spodoptera littoralis caterpillars became more attractive to the parasitoids than water treated plants. The elicitors alone or in combination with plants that were not induced by herbivory were not attractive to the wasps. Interestingly, plants treated with the plant strengtheners did not show any consistent increase in volatile emissions. On the contrary, treated plants released less herbivore-induced volatiles, most notably indole, which has been reported to interfere with parasitoid attraction. The emission of the sesquiterpenes (E)-β-caryophyllene, β-bergamotene, and (E)-β-farnesene was similarly reduced by the treatment. Expression profiles of marker genes showed that BTH and Laminarin induced several pathogenesis related (PR) genes. The results support the notion that, as yet undetectable and unidentified compounds, are of major importance for parasitoid attraction, and that these attractants may be masked by some of the major compounds in the volatile blends. This study confirms that elicitors of pathogen resistance are compatible with the biological control of insect pests and may even help to improve it.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An acute injury to the triangular fibrocartilage complex (TFCC) with avulsion of the foveal attachment can produce distal radioulnar joint (DRUJ) instability. The avulsed TFCC is translated distally so the footprint will be bathed in synovial fluid from the DRUJ and will become covered in synovitis. If the TFCC fails to heal to the footprint, then persistent instability can occur. The authors describe a surgical technique indicated for the treatment of persistent instability of the DRUJ due to foveal detachment of the TFCC. The procedure utilizes a loop of palmaris longus tendon graft passed through the ulnar aspect of the TFCC and into an osseous tunnel in the distal ulna to reconstruct the foveal attachment. This technique provides stability of the distal ulna to the radius and carpus. We recommend this procedure for chronic instability of the DRUJ due to TFCC avulsion, but recommend that suture repair remain the treatment of choice for acute instability. An arthroscopic assessment includes the trampoline test, hook test, and reverse hook test. DRUJ ballottement under arthroscopic vision details the direction of instability, the functional tear pattern, and unmasks concealed tears. If the reverse hook test demonstrates a functional instability between the TFCC and the radius, then a foveal reconstruction is contraindicated, and a reconstruction that stabilizes the radial and ulnar aspects of the TFCC is required. The foveal reconstruction technique has the advantage of providing a robust anatomically based reconstruction of the TFCC to the fovea, which stabilizes the DRUJ and the ulnocarpal sag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The understanding of the charge transport through single molecule junctions is a prerequisite for the design and building of electronic circuits based on single molecule junctions. However, reliable and robust formation of such junctions is a challenging task to achieve. In this topical review, we present a systematic investigation of the anchoring group effect on single molecule junction conductance by employing two complementary techniques, namely scanning tunneling microscopy break junction (STM-BJ) and mechanically controllable break junction (MCBJ) techniques, based on the studies published in the literature and important results from our own work. We compared conductance studies for conventional anchoring groups described earlier with the molecular junctions formed through π-interactions with the electrode surface (Au, Pt, Ag) and we also summarized recent developments in the formation of highly conducting covalent Au–C σ-bonds using oligophenyleneethynylene (OPE) and an alkane molecular backbone. Specifically, we focus on the electron transport properties of diaryloligoyne, oligophenyleneethynylene (OPE) and/or alkane molecular junctions composed of several traditional anchoring groups, (dihydrobenzo[b]thiophene (BT), 5-benzothienyl analogue (BTh), thiol (SH), pyridyl (PY), amine (NH2), cyano (CN), methyl sulphide (SMe), nitro (NO2)) and other anchoring groups at the solid/liquid interface. The qualitative and quantitative comparison of the results obtained with different anchoring groups reveals structural and mechanistic details of the different types of single molecular junctions. The results reported in this prospective may serve as a guideline for the design and synthesis of molecular systems to be used in molecule-based electronic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Herbivore-damaged plants release a blend of volatile organic compounds (VOCs) that differs from undamaged plants. These induced changes are known to attract the natural enemies of the herbivores and therefore are expected to be important determinants of the effectiveness of biological control in agriculture. One way of boosting this phenomenon is the application of plant strengtheners, which has been shown to enhance parasitoid attraction in maize. It is unclear whether this is also the case for other important crops. RESULTS The plant strengtheners BTH [benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester] and laminarin were applied to cotton plants, and the effects on volatile releases and the attraction of three hymenopteran parasitoids, Cotesia marginiventris, Campoletis sonorensis and Microplitis rufiventris, were studied. After treated and untreated plants were induced by real or simulated caterpillar feeding, it was found that BTH treatment increased the attraction of the parasitoids, whereas laminarin had no significant effect. BTH treatment selectively increased the release of two homoterpenes and reduced the emission of indole, the latter of which had been shown to interfere with parasitoid attraction in earlier studies. Canonical variate analyses of the data show that the parasitoid responses were dependent on the quality rather than the quantity of volatile emission in this tritrophic interaction. CONCLUSION Overall, these results strengthen the emerging paradigm that induction of plant defences with chemical elicitors such as BTH could provide a sustainable and environmentally friendly strategy for biological control of pests by enhancing the attractiveness of cultivated plants to natural enemies of insect herbivores. © 2014 Society of Chemical Industry