3 resultados para BSP proteins

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A derivative (EMD) of enamel matrix proteins (EMPs) is used for periodontal regeneration because EMPs are believed to induce the formation of acellular extrinsic fiber cementum (AEFC). Other reports, however, indicate that EMPs have osteogenic potential. The aim of this study was to characterize the nature of the tissue that forms on the root surface following application of EMD. Ten human teeth affected by periodontitis and scheduled for extraction were treated with EMD. Four to six weeks later, they were extracted and processed for analysis by light microscopy and transmission electron microscopy. Immunocytochemistry with antibodies against bone sialoprotein (BSP) and osteopontin (OPN) was performed to determine the mineralization pattern. The newly formed tissues on the root were thick and contained embedded cells. Small mineralization foci were regularly seen, and large organic matrix patches were occasionally seen, but a distinct mineralization front was lacking. While labeling for BSP was always associated with small mineralization foci and large matrix patches, OPN labeling was seen inconsistently. It is concluded that tissues resembling either cellular intrinsic fiber cementum or a type of bone were observed. The mineralization pattern mostly resembled that found in bone, except for a few areas that exhibited a hitherto undescribed mineralization pattern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deproteinized bovine bone mineral (DBBM) (Bio-Oss®, Geistlich-Pharma, Wohlhusen, Switzerland) is widely used as a bone substitute for the preservation or augmentation of bone volume. After implantation near native bone, new bone may form around the DBBM particles. Since DBBM is very resistant to resorption, it will hardly ever be replaced by bone and, therefore, the mechanical stability largely depends on the extent of bridging between the newly formed bone and the DBBM particles. The molecular factors responsible for the deposition of new bone to the DBBM particles have not been determined. The aim of this study was, therefore, to test the hypothesis that DBBM implanted near bone take up bone-related matrix proteins that are involved in cell-matrix interactions. Cylindrical biopsies harvested from tooth extraction sites filled with DBBM particles were fixed in aldehydes, decalcified, and embedded in LR White resin. Thin sections were incubated with antibodies against bone sialoprotein (BSP) and osteopontin (OPN), two bone proteins involved in cell attachment, signaling, and mineralization. High-resolution immunogold labeling was used to examine protein distribution. BSP and OPN were immunodetected in all DBBM particles and yielded an identical distribution pattern. Most gold particles were found over the peripheral DBBM matrix, although some peripheral regions lacked immunolabeling. The bulk of the interior DBBM portion was mainly free of labeling with the exception of the peripheral matrix of some osteocyte lacunae and canaliculi. It is concluded that DBBM selectively takes up at least BSP and OPN after its implantation at a bone site. BSP and OPN or other molecules accommodating in DBBM may modulate events associated with cell attachment and differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Root canal obliterations may pose esthetic and clinical problems or may even be a risk factor for tooth survival. Microcalcifications in the pulp can be so extensive that the entire root canal system becomes obliterated. Since bone sialoprotein (BSP) and osteopontin (OPN) are involved in both physiological and pathological mineralization processes, our hypothesis was that these two bone-related noncollagenous proteins are present in microcalcifications of the pulp. The purpose of this study was, therefore, to characterize the nature of microcalcifications in the pulp of aged human teeth. Methods: From a large collection of human teeth, 10 were found to exhibit pulpal microcalcifications. The teeth were extracted for periodontal reasons from 39-60 year old patients. After fixation in aldehydes and decalcification, teeth were processed for embedding in LR White resin for analysis in the light and transmission electron microscope. For the detection of BSP and OPN, post-embedding high resolution immunocytochemistry was applied. Results: The microcalcifications were round or elongated, occasionally coalescing, and intensely stained with toluidine blue. Collagen fibrils were found in most but not all microcalcifications. All microcalcifications were immunoreactive for both antibodies and showed an identical labeling pattern. Gold particle labeling was extensively found throughout the interfibrillar ground substance of the microcalcifications, whereas the dentin matrix lacked immunolabeling. Conclusion: BSP and OPN appear to be major matrix constituents of pulp microcalcifications and may thus, like in other mineralized tissues, be involved in their mineralization process.