10 resultados para BRAGG GRATINGS

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The delicate anatomy of the ear require surgeons to use great care when operating on its internal structures. One example for such an intervention is the stapedectomy, where a small crook shaped piston is placed in the oval window of the cochlea and connected to the incus through crimping thus bypassing the diseased stapes. Performing the crimp process with the correct force is necessary since loose crimps poorly transmit sound whereas tight crimps will eventually result in necrosis of the incus. Clinically, demand is high to reproducibly conduct the crimp process through a precise force measurement. For this reason, we have developed a fiber Bragg grating (FBG) integrated microforceps for use in such interventions. This device was calibrated, and tested in cadaver preparations. With this instrument we were able to measure for the first time forces involved in crimping a stapes prosthesis to the incus. We also discuss a method of attaching and actuating such forceps in conjunction with a robot currently under development in our group. Each component of this system can be used separately or combined to improve surgical accuracy, confidence and outcome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the visual acuity of adult zebrafish by assessing the optokinetic reflex. Using a modified commercially available optomotor device (OptoMotry®), virtual three-dimensional gratings of variable spatial frequency or contrast were presented to adult zebrafish. In a first experiment, visual acuity was evaluated by changing the spatial frequency at different angular velocities. Thereafter, contrast sensitivity was evaluated by changing the contrast level at different spatial frequencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a technique for interactive rendering of diffraction effects produced by biological nanostructures such as snake skin surface gratings. Our approach uses imagery from atomic force microscopy that accurately captures the nanostructures responsible for structural coloration, that is, coloration due to wave interference, in a variety of animals. We develop a rendering technique that constructs bidirectional reflection distribution functions (BRDFs) directly from the measured data and leverages precomputation to achieve interactive performance. We demonstrate results of our approach using various shapes of the surface grating nanostructures. Finally, we evaluate the accuracy of our precomputation-based technique and compare to a reference BRDF construction technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybrid molds enable the fabrication of polymeric parts with features of different length scales by injection molding. The resulting polymer microelements combine optical or biological functionalities with designed mechanical properties. Two applications are chosen for illustration of this concept: As a first example, microelements for optical communication via fiber-to-fiber coupling are manufactured by combining two molds to a small mold insert. Both molds are fabricated using lithography and electroplating. As a second example, microcantilevers (μCs) for chemical sensing are surface patterned using a modular mold composed of a laser-machined cavity defining the geometry of the μCs, and an opposite flat tool side which is covered by a patterned polymer foil. Injection molding results in an array of 35 μm-thick μCs with microscale surface topographies. In both cases, when the mold is assembled and closed, reliefs are transferred onto one surface of the molded element whose outlines are defined by the micromold cavity. The main advantage of these hybrid methods lies in the simple integration of optical surface structures and gratings onto the surface of microcomponents with different sizes and orientations. This allows for independent development of functional properties and combinations thereof.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a technique for interactive rendering of diffraction effects produced by biological nanostructures, such as snake skin surface gratings. Our approach uses imagery from atomic force microscopy that accurately captures the geometry of the nanostructures responsible for structural colouration, that is, colouration due to wave interference, in a variety of animals. We develop a rendering technique that constructs bidirectional reflection distribution functions (BRDFs) directly from the measured data and leverages pre-computation to achieve interactive performance. We demonstrate results of our approach using various shapes of the surface grating nanostructures. Finally, we evaluate the accuracy of our pre-computation-based technique and compare to a reference BRDF construction technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational interaction is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics—the moiré deflectometer—for a measurement of the acceleration of slow antiprotons. The setup consists of two identical transmission gratings and a spatially resolving emulsion detector for antiproton annihilations. Absolute referencing of the observed antimatter pattern with a photon pattern experiencing no deflection allows the direct inference of forces present. The concept is also straightforwardly applicable to antihydrogen measurements as pursued by the AEgIS collaboration. The combination of these very different techniques from high energy and atomic physics opens a very promising route to the direct detection of the gravitational acceleration of neutral antimatter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is an experiment that aims to perform the first direct measurement of the gravitational acceleration g of antihydrogen in the Earth’s field. A cold antihydrogen beam will be produced by charge exchange reaction between cold antiprotons and positronium excited in Rydberg states. Rydberg positronium (with quantum number n between 20 and 30) will be produced by a two steps laser excitation. The antihydrogen beam, after being accelerated by Stark effect, will fly through the gratings of a moir´e deflectometer. The deflection of the horizontal beam due to its free fall will be measured by a position sensitive detector. It is estimated that the detection of about 103 antihydrogen atoms is required to determine the gravitational acceleration with a precision of 1%. In this report an overview of the AEgIS experiment is presented and its current status is described. Details on the production of slow positronium and its excitation with lasers are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a power-scalable approach for yellow laser-light generation based on standard Ytterbium (Yb) doped fibers. To force the cavity to lase at 1154 nm, far above the gain-maximum, measures must be taken to fulfill lasing condition and to suppress competing amplified spontaneous emission (ASE) in the high-gain region. To prove the principle we built a fiber-laser cavity and a fiber-amplifier both at 1154 nm. In between cavity and amplifier we suppressed the ASE by 70 dB using a fiber Bragg grating (FBG) based filter. Finally we demonstrated efficient single pass frequency doubling to 577 nm with a periodically poled lithium niobate crystal (PPLN). With our linearly polarized 1154 nm master oscillator power fiber amplifier (MOFA) system we achieved slope efficiencies of more than 15 % inside the cavity and 24 % with the fiber-amplifier. The frequency doubling followed the predicted optimal efficiency achievable with a PPLN crystal. So far we generated 1.5 W at 1154nm and 90 mW at 577 nm. Our MOFA approach for generation of 1154 nm laser radiation is power-scalable by using multi-stage amplifiers and large mode-area fibers and is therefore very promising for building a high power yellow laser-light source of several tens of Watt.