15 resultados para BRADFORD
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Systematic consideration of scientific support is a critical element in developing and, ultimately, using adverse outcome pathways (AOPs) for various regulatory applications. Though weight of evidence (WoE) analysis has been proposed as a basis for assessment of the maturity and level of confidence in an AOP, methodologies and tools are still being formalized. The Organization for Economic Co-operation and Development (OECD) Users' Handbook Supplement to the Guidance Document for Developing and Assessing AOPs (OECD 2014a; hereafter referred to as the OECD AOP Handbook) provides tailored Bradford-Hill (BH) considerations for systematic assessment of confidence in a given AOP. These considerations include (1) biological plausibility and (2) empirical support (dose-response, temporality, and incidence) for Key Event Relationships (KERs), and (3) essentiality of key events (KEs). Here, we test the application of these tailored BH considerations and the guidance outlined in the OECD AOP Handbook using a number of case examples to increase experience in more transparently documenting rationales for assigned levels of confidence to KEs and KERs, and to promote consistency in evaluation within and across AOPs. The major lessons learned from experience are documented, and taken together with the case examples, should contribute to better common understanding of the nature and form of documentation required to increase confidence in the application of AOPs for specific uses. Based on the tailored BH considerations and defining questions, a prototype quantitative model for assessing the WoE of an AOP using tools of multi-criteria decision analysis (MCDA) is described. The applicability of the approach is also demonstrated using the case example aromatase inhibition leading to reproductive dysfunction in fish. Following the acquisition of additional experience in the development and assessment of AOPs, further refinement of parameterization of the model through expert elicitation is recommended. Overall, the application of quantitative WoE approaches hold promise to enhance the rigor, transparency and reproducibility for AOP WoE determinations and may play an important role in delineating areas where research would have the greatest impact on improving the overall confidence in the AOP.
Resumo:
Increased body mass index (BMI), as an approximation of body adiposity, is a risk factor for developing several adult malignancies. To quantify these risks, we reported a comprehensive systematic review (Lancet 2008; 371: 569-78) of prospective observational studies determining associations between BMI and risk of incident cancer for 20 cancer types. We demonstrated that associations are: (i) sex-specific; (ii) exist for a wider range of malignancies than previously thought; and (iii) are broadly consistent across geographic populations. In the present paper, we tested these data against the Bradford-Hill criteria of causal association, and argue that the available data support strength of association, consistency, specificity, temporality, biological gradient, plausibility, coherence and probably analogy. However, the experimental evidence supporting reversibility is currently lacking, though indirect evidence from longitudinal data in cohort studies and long-term follow-up post-bariatric surgery is emerging. We additionally assessed these data against appropriate adjustment for available confounding factors; measurement error and study design; and residual confounding; and found lack of alternative explanations. We conclude that there is considerable evidence to support a causal association between BMI and risk for many cancer types, but in order to establish the role of weight control in cancer prevention, there is a need to develop trial frameworks in which to better test reversibility.
Resumo:
Background Idiopathic pulmonary fibrosis is a progressive and fatal lung disease with inevitable loss of lung function. The CAPACITY programme (studies 004 and 006) was designed to confirm the results of a phase 2 study that suggested that pirfenidone, a novel antifibrotic and anti-inflammatory drug, reduces deterioration in lung function in patients with idiopathic pulmonary fibrosis. Methods In two concurrent trials (004 and 006), patients (aged 40–80 years) with idiopathic pulmonary fibrosis were randomly assigned to oral pirfenidone or placebo for a minimum of 72 weeks in 110 centres in Australia, Europe, and North America. In study 004, patients were assigned in a 2:1:2 ratio to pirfenidone 2403 mg/day, pirfenidone 1197 mg/day, or placebo; in study 006, patients were assigned in a 1:1 ratio to pirfenidone 2403 mg/day or placebo. The randomisation code (permuted block design) was computer generated and stratified by region. All study personnel were masked to treatment group assignment until after final database lock. Treatments were administered orally, 801 mg or 399 mg three times a day. The primary endpoint was change in percentage predicted forced vital capacity (FVC) at week 72. Analysis was by intention to treat. The studies are registered with ClinicalTrials.gov, numbers NCT00287729 and NCT00287716. Findings In study 004, 174 of 435 patients were assigned to pirfenidone 2403 mg/day, 87 to pirfenidone 1197 mg/day, and 174 to placebo. In study 006, 171 of 344 patients were assigned to pirfenidone 2403 mg/day, and 173 to placebo. All patients in both studies were analysed. In study 004, pirfenidone reduced decline in FVC (p=0·001). Mean FVC change at week 72 was −8·0% (SD 16·5) in the pirfenidone 2403 mg/day group and −12·4% (18·5) in the placebo group (difference 4·4%, 95% CI 0·7 to 9·1); 35 (20%) of 174 versus 60 (35%) of 174 patients, respectively, had a decline of at least 10%. A significant treatment effect was noted at all timepoints from week 24 and in an analysis over all study timepoints (p=0·0007). Mean change in percentage FVC in the pirfenidone 1197 mg/day group was intermediate to that in the pirfenidone 2403 mg/day and placebo groups. In study 006, the difference between groups in FVC change at week 72 was not significant (p=0·501). Mean change in FVC at week 72 was −9·0% (SD 19·6) in the pirfenidone group and −9·6% (19·1) in the placebo group, and the difference between groups in predicted FVC change at week 72 was not significant (0·6%, −3·5 to 4·7); however, a consistent pirfenidone effect was apparent until week 48 (p=0·005) and in an analysis of all study timepoints (p=0·007). Patients in the pirfenidone 2403 mg/day group had higher incidences of nausea (125 [36%] of 345 vs 60 [17%] of 347), dyspepsia (66 [19%] vs 26 [7%]), vomiting (47 [14%] vs 15 [4%]), anorexia (37 [11%] vs 13 [4%]), photosensitivity (42 [12%] vs 6 [2%]), rash (111 [32%] vs 40 [12%]), and dizziness (63 [18%] vs 35 [10%]) than did those in the placebo group. Fewer overall deaths (19 [6%] vs 29 [8%]) and fewer deaths related to idiopathic pulmonary fibrosis (12 [3%] vs 25 [7%]) occurred in the pirfenidone 2403 mg/day groups than in the placebo groups. Interpretation The data show pirfenidone has a favourable benefit risk profile and represents an appropriate treatment option for patients with idiopathic pulmonary fibrosis.
Resumo:
Einleitung: Bandscheiben wirken als Schockabsorbierer in der Wirbelsäule und auf diese wirken meistens komplexe Kräfte, zusammengesetzt aus Kompression, Torsion und Flexion. Die biomechanishe Umgebung einer Bandscheibe ist denn auch geprägt von komplexen Belastungen. Die Forschung über die in vitro Bandscheibenbiologie hat sich bisher um die axiale Kompression konzentriert, wobei die Bedeutung von Torsion und insbesondere dem Zusammenspiel von Kompression und Torsion (="Twisting") praktisch noch nie untersucht wurde an lebenden Organkultur-Explantaten. Wir präsentieren neue mechanobiologische Daten über die Überlebenswahrscheinlichkeit von Bandscheibenzellen kultiviert in einem neuartigen, kompakten Design eines bi-axialen Bioreaktors, um die Bedeutung von Kompression und Torsion zu verstehen. Material/Methode: Bovine Schwanzbandscheiben mit den Endplatten wurden isoliert wie bereits beschrieben [2] und mechanische Belastung wurde angewendet mit einem 2 DoF Bioreaktor für 14 Tage [3]. Die Bandscheiben wurden in verschiedene Belastungsgruppen eingeteilt: 1) Keine Belastung (NL), 2) zyklische Kompression (CC) [8h: axiale Kompression mit 0.6 ± 0.2 MPa, 0.2 Hz], 3) zyklische Torsion (CT) [8h: ± 2° torsion, 0.2 Hz, 0.2 MPa compression], 4) zyklische Kompression und Torsion (CCT) [8h: 0.6 ± 0.2 MPa, 0.2 Hz & ± 2° torsion, 0.2 Hz]. Das Bandscheibengewebe wurde mit LIVE/DEAD gefärbt und miteinem konfokalen Mikroskop visualisiert um die Überlebensrate zu bestimmen. Zell Apoptosis wurde quantifiziert mit einem Caspase 3/7 Kit normalisiert zum totalen Proteingehalt (Bradford). Relative Gen-Expression von wichtigen Genen für die Bandscheibe wurde bestimmt von anabolischen, katabolischen und inflammatorischen Genen mittels real-time RT-PCR. Die Morphologie der Bandscheibenzellen wurde mittels Histologie bestimmt. Ergebnisse: Die Resultate zeigten einen starken Abfall der Zellüberlebenswahrscheinlichkeit im Zentrum der Bandscheiben, dem Nulceus Pulposus (NP), i.e. 10%, in der Gruppe mit CCT. Hingegen die Überlebenswahrscheinlichkeit im Annulus fibrosus (AF) war stabilisiert bei über 60% im NP und im AF in allen anderen Gruppen (Fig 1). Apoptotische Aktivität war statistisch signifikant erhöht in der CC-Gruppe, aber nicht in der CCT-Gruppe, was die Vermutung nahe legt, dass der erhöhte Zellverlust im NP nicht mit Apoptose sondern mit Nekrose erklärt werden kann. Die Gen Expression der anabolischen Gene COL1, COL2 und Biglycan war signifikant erhöht im AF in der CCT Gruppe, ebenfalls waren Remodeling-Gene angeschaltet wie ADAMTS4 und MMP-13 in der CCT Gruppe (Fig. 2). Der Glykosaminoglykan (GAG) Gehalt war generell im AF erhöht in den Gruppen unter mechanischer Belastung, jedoch nicht statistisch signifikant. Schlussfolgerung: Zyklische Torsion kombiniert mit zyklischer Kompression waren in dieser Studie erfolgreich und nach unserem besten Wissen zum ersten Mal an Bandscheibenexplantaten in einer 14- tägigen Organkultur angewendet worden in einem dafür speziell konzipierten Bioreaktor. Die Resultezeigten überraschend einen negativen Effekt bei physiologischen Parametern, was die Belastung (0.6MPa ± 0.2MPa) und die Torsion (± 2°) angeht. Dieser negative Effekt des "Twistings" auf die Überlebenswahrscheinlichkeit der Zellen war jedoch nur regional im NP von Bedeutung, wohingegen im AF keine Effekte zu detektieren waren.
Resumo:
Ecosystem management policies increasingly emphasize provision of multiple, as opposed to single, ecosystem services. Management for such "multifunctionality" has stimulated research into the role that biodiversity plays in providing desired rates of multiple ecosystem processes. Positive effects of biodiversity on indices of multifunctionality are consistently found, primarily because species that are redundant for one ecosystem process under a given set of environmental conditions play a distinct role under different conditions or in the provision of another ecosystem process. Here we show that the positive effects of diversity (specifically community composition) on multifunctionality indices can also arise from a statistical fallacy analogous to Simpson's paradox (where aggregating data obscures causal relationships). We manipulated soil faunal community composition in combination with nitrogen fertilization of model grassland ecosystems and repeatedly measured five ecosystem processes related to plant productivity, carbon storage, and nutrient turnover. We calculated three common multifunctionality indices based on these processes and found that the functional complexity of the soil communities had a consistent positive effect on the indices. However, only two of the five ecosystem processes also responded positively to increasing complexity, whereas the other three responded neutrally or negatively. Furthermore, none of the individual processes responded to both the complexity and the nitrogen manipulations in a manner consistent with the indices. Our data show that multifunctionality indices can obscure relationships that exist between communities and key ecosystem processes, leading us to question their use in advancing theoretical understanding-and in management decisions-about how biodiversity is related to the provision of multiple ecosystem services.
Resumo:
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD.
Resumo:
Idiopathic pulmonary fibrosis (IPF) and bleomycin-induced pulmonary fibrosis are associated with surfactant system dysfunction, alveolar collapse (derecruitment), and collapse induration (irreversible collapse). These events play undefined roles in the loss of lung function. The purpose of this study was to quantify how surfactant inactivation, alveolar collapse, and collapse induration lead to degradation of lung function. Design-based stereology and invasive pulmonary function tests were performed 1, 3, 7, and 14 days after intratracheal bleomycin-instillation in rats. The number and size of open alveoli was correlated to mechanical properties. Active surfactant subtypes declined by Day 1, associated with a progressive alveolar derecruitment and a decrease in compliance. Alveolar epithelial damage was more pronounced in closed alveoli compared with ventilated alveoli. Collapse induration occurred on Day 7 and Day 14 as indicated by collapsed alveoli overgrown by a hyperplastic alveolar epithelium. This pathophysiology was also observed for the first time in human IPF lung explants. Before the onset of collapse induration, distal airspaces were easily recruited, and lung elastance could be kept low after recruitment by positive end-expiratory pressure (PEEP). At later time points, the recruitable fraction of the lung was reduced by collapse induration, causing elastance to be elevated at high levels of PEEP. Surfactant inactivation leading to alveolar collapse and subsequent collapse induration might be the primary pathway for the loss of alveoli in this animal model. Loss of alveoli is highly correlated with the degradation of lung function. Our ultrastructural observations suggest that collapse induration is important in human IPF.
Resumo:
The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.39 trillion exist in tropical and subtropical forests, with 0.74 trillion in boreal regions and 0.61 trillion in temperate regions. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming effect of humans across most of the world. Based on our projected tree densities, we estimate that over 15 billion trees are cut down each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.