11 resultados para BONE LEAD

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinically, the displacement of intravertebral fat into the circulation during vertebroplasty is reported to lead to problems in elderly patients and can represent a serious complication, especially when multiple levels have to be treated. An in vitro study has shown the feasibility of removing intravertebral fat by pulsed jet-lavage prior to vertebroplasty, potentially reducing the embolization of bone marrow fat from the vertebral bodies and alleviating the cardiovascular changes elicited by pulmonary fat embolism. In this in vivo study, percutaneous vertebroplasty using polymethylmethacrylate (PMMA) was performed in three lumbar vertebrae of 11 sheep. In six sheep (lavage group), pulsed jet-lavage was performed prior to injection of PMMA compared to the control group of five sheep receiving only PMMA vertebroplasty. Invasive recording of blood pressures was performed continuously until 60 min after the last injection. Cardiac output and arterial blood gas parameters were measured at selected time points. Post mortem, the injected cement volume was measured using CT and lung biopsies were processed for assessment of intravascular fat. Pulsed jet-lavage was feasible in the in vivo setting. In the control group, the injection of PMMA resulted in pulmonary fat embolism and a sudden and significant increase in mean pulmonary arterial pressure. Pulsed jet-lavage prevented any cardiovascular changes and significantly reduced the severity of bone marrow fat embolization. Even though significantly more cement had been injected into the lavaged vertebral bodies, significantly fewer intravascular fat emboli were identified in the lung tissue. Pulsed jet-lavage prevented the cardiovascular complications after PMMA vertebroplasty in sheep and alleviated the severity of pulmonary fat embolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulmonary fat embolism (PFE) is frequently encountered in blunt trauma. The clinical manifestation ranges from no impairment in light cases to death due to right-sided heart failure or hypoxaemia in severe cases. Occasionally, pulmonary fat embolism can give rise to a fat embolism syndrome (FES), which is marked by multiorgan failure, respiratory disorders, petechiae and often death. It is well known that fractures of long bones can lead to PFE. Several authors have argued that PFE can arise due to mere soft tissue injury in the absence of fractures, a claim other authors disagree upon. In this study, we retrospectively examined 50 victims of blunt trauma with regard to grade and extent of fractures and crushing of subcutaneous fatty tissue and presence and severity of PFE. Our results indicate that PFE can arise due to mere crushing of subcutaneous fat and that the fracture grade correlated well with PFE severity (p = 0.011). The correlation between PFE and the fracture severity (body regions affected by fractures and fracture grade) showed a lesser significant correlation (p = 0.170). The survival time (p = 0.567), the amount of body regions affected by fat crushing (p = 0.336) and the fat crush grade (p = 0.485) did not correlate with the PFE grade, nor did the amount of body regions affected by fractures. These results may have clinical implications for the assessment of a possible FES development, as, if the risk of a PFE is known, preventive steps can be taken.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Identification of a novel rhodopsin mutation in a family with retinitis pigmentosa and comparison of the clinical phenotype to a known mutation at the same amino acid position. METHODS: Screening for mutations in rhodopsin was performed in 78 patients with retinitis pigmentosa. All exons and flanking intronic regions were amplified by PCR, sequenced, and compared to the reference sequence derived from the National Center for Biotechnology Information (NCBI, Bethesda, MD) database. Patients were characterized clinically according to the results of best corrected visual acuity testing (BCVA), slit lamp examination (SLE), funduscopy, Goldmann perimetry (GP), dark adaptometry (DA), and electroretinography (ERG). Structural analyses of the rhodopsin protein were performed with the Swiss-Pdb Viewer program available on-line (http://www.expasy.org.spdvbv/ provided in the public domain by Swiss Institute of Bioinformatics, Geneva, Switzerland). RESULTS: A novel rhodopsin mutation (Gly90Val) was identified in a Swiss family of three generations. The pedigree indicated autosomal dominant inheritance. No additional mutation was found in this family in other autosomal dominant genes. The BCVA of affected family members ranged from 20/25 to 20/20. Fundus examination showed fine pigment mottling in patients of the third generation and well-defined bone spicules in patients of the second generation. GP showed concentric constriction. DA demonstrated monophasic cone adaptation only. ERG revealed severely reduced rod and cone signals. The clinical picture is compatible with retinitis pigmentosa. A previously reported amino acid substitution at the same position in rhodopsin leads to a phenotype resembling night blindness in mutation carriers, whereas patients reported in the current study showed the classic retinitis pigmentosa phenotype. The effect of different amino acid substitutions on the three-dimensional structure of rhodopsin was analyzed by homology modeling. Distinct distortions of position 90 (shifts in amino acids 112 and 113) and additional hydrogen bonds were found. CONCLUSIONS: Different amino acid substitutions at position 90 of rhodopsin can lead to night blindness or retinitis pigmentosa. The data suggest that the property of the substituted amino acid distinguishes between the phenotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: This study was designed to evaluate the effect of gap width and graft placement on bone healing around implants placed in simulated extraction sockets of various widths in four Labrador dogs. MATERIALS AND METHODS: Five Osseotite implants per dog were placed in the mandible of four dogs. Two implants were inserted into sites with a 2.37 mm and two with a 1 mm gap present between the implants and bone around the coronal 6 mm of the implants in each dog. For one of each gap sizes, the gap was filled with Bio-Oss, and the other two with blood alone. A fifth implant was inserted without a gap and used as a control. Ground sections were prepared from biopsies taken at 4 months and histometric measurements of osseointegration and bone between the threads made for the coronal 6 mm. RESULTS: The medians for osseointegration ranged from 5.2 mm for control to 1-2.6 mm for the test modalities. There were significant differences for linear measurements of osseointegration (chi(2) 18.27; df 4; P=0.0011) and bone area within threads (chi(2) 23.4; df 4; P=0.0001) between test modalities. CONCLUSIONS: The results suggest that the wider the gap around the implants, the less favourable the histological outcome at short time intervals following treatment. They also infer that bone grafting with an organic bovine bone xenograft seems to lead to a more favourable histological outcome for wider circumferential defects but not for narrower defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Lateral ridge augmentations are traditionally performed using autogenous bone grafts to support membranes for guided bone regeneration (GBR). The bone-harvesting procedure, however, is accompanied by considerable patient morbidity. AIM: The aim of the present study was to test whether or not resorbable membranes and bone substitutes will lead to successful horizontal ridge augmentation allowing implant installation under standard conditions. MATERIAL AND METHODS: Twelve patients in need of implant therapy participated in this study. They revealed bone deficits in the areas intended for implant placement. Soft tissue flaps were carefully raised and blocks or particles of deproteinized bovine bone mineral (DBBM) (Bio-Oss) were placed in the defect area. A collagenous membrane (Bio-Gide) was applied to cover the DBBM and was fixed to the surrounding bone using poly-lactic acid pins. The flaps were sutured to allow for healing by primary intention. RESULTS: All sites in the 12 patients healed uneventfully. No flap dehiscences and no exposures of membranes were observed. Nine to 10 months following augmentation surgery, flaps were raised in order to visualize the outcomes of the augmentation. An integration of the DBBM particles into the newly formed bone was consistently observed. Merely on the surface of the new bone, some pieces of the grafting material were only partly integrated into bone. However, these were not encapsulated by connective tissue but rather anchored into the newly regenerated bone. In all of the cases, but one, the bone volume following regeneration was adequate to place implants in a prosthetically ideal position and according to the standard protocol with complete bone coverage of the surface intended for osseointegration. Before the regenerative procedure, the average crestal bone width was 3.2 mm and to 6.9 mm at the time of implant placement. This difference was statistically significant (P<0.05, Wilcoxon's matched pairs signed-rank test). CONCLUSION: After a healing period of 9-10 months, the combination of DBBM and a collagen membrane is an effective treatment option for horizontal bone augmentation before implant placement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spinal cord injury (SCI) leads to severe bone loss in the paralysed limbs and to a resulting increased fracture risk thereof. Since long bone fractures can lead to comorbidities and a reduction in quality of life, it is important to improve bone strength in people with chronic SCI. In this prospective longitudinal cohort study, we investigated whether functional electrical stimulation (FES) induced high-volume cycle training can partially reverse the loss of bone substance in the legs after chronic complete SCI. Eleven participants with motor-sensory complete SCI (mean age 41.9+/-7.5 years; 11.0+/-7.1 years post injury) were recruited. After an initial phase of 14+/-7 weeks of FES muscle conditioning, participants performed on average 3.7+/-0.6 FES-cycling sessions per week, of 58+/-5 min each, over 12 months at each individual's highest power output. Bone and muscle parameters were investigated in the legs by means of peripheral quantitative computed tomography before the muscle conditioning (t1), and after six (t2) and 12 months (t3) of high-volume FES-cycle training. After 12 months of FES-cycling, trabecular and total bone mineral density (BMD) as well as total cross-sectional area in the distal femoral epiphysis increased significantly by 14.4+/-21.1%, 7.0+/-10.8% and 1.2+/-1.5%, respectively. Bone parameters in the femoral shaft showed small but significant decreases, with a reduction of 0.4+/-0.4% in cortical BMD, 1.8+/-3.0% in bone mineral content, and 1.5+/-2.1% in cortical thickness. These decreases mainly occurred between t1 and t2. No significant changes were found in any of the measured bone parameters in the tibia. Muscle CSA at the thigh increased significantly by 35.5+/-18.3%, while fat CSA at the shank decreased by 16.7+/-12.3%. Our results indicate that high-volume FES-cycle training leads to site-specific skeletal changes in the paralysed limbs, with an increase in bone parameters at the actively loaded distal femur but not the passively loaded tibia. Thus, we conclude that high-volume FES-induced cycle training has clinical relevance as it can partially reverse bone loss and thus may reduce fracture risk at this fracture prone site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: During orthopedic surgery, embolization of bone marrow fat can lead to potentially fatal, intra-operative cardiovascular deterioration. Vasoactive mediators may also be released from the bone marrow and contribute to these changes. Increased plasma levels of endothelin-1 (ET-1) have been observed after pulmonary air and thrombo-embolism. The role of ET-1 in the development of acute cardiovascular deterioration as a result of bone marrow fat embolization during vertebroplasty was therefore investigated. METHODS: Bone cement was injected into three lumbar vertebrae of six sheep in order to force bone marrow fat into the circulation. Invasive blood pressures and heart rate were recorded continuously until 60 min after the last injection. Cardiac output, arterial and mixed venous blood gas parameters and plasma ET-1 concentrations were measured at selected time points. Post-mortem, lung biopsies were taken for analysis of intravascular fat. RESULTS: Cement injections resulted in a sudden (within 1 min) and severe increase in pulmonary arterial pressure (>100%). Plasma concentrations of ET-1 started to increase after the second injection, but no significant changes were observed. Intravascular fat and bone marrow cells were present in all lung lobes. CONCLUSION: Cement injections into vertebral bodies elicited fat embolism resulting in subsequent cardiovascular changes that were characterized by an increase in pulmonary arterial pressure. Cardiovascular complications as a result of bone marrow fat embolism should thus be considered in patients undergoing vertebroplasty. No significant changes in ET-1 plasma values were observed. Thus, ET-1 did not contribute to the acute cardiovascular changes after fat embolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To evaluate the suitability of a minipig model for the study of bone healing and osseointegration of dental implants following bone splitting and expansion of narrow ridges. MATERIAL AND METHODS In four minipigs, the mandibular premolars and first molars were extracted together with removal of the buccal bone plate. Three months later, ridge splitting and expansion was performed with simultaneous placement of three titanium implants per quadrant. On one side of the mandible, the expanded bone gap between the implants was filled with an alloplastic biphasic calcium phosphate (BCP) material, while the gap on the other side was left unfilled. A barrier membrane was placed in half of the quadrants. After a healing period of 6 weeks, the animals were sacrificed for histological evaluation. RESULTS In all groups, no bone fractures occurred, no implants were lost, all 24 implants were osseointegrated, and the gap created by bone splitting was filled with new bone, irrespective of whether BCP or a barrier membrane was used. Slight exposure of five implants was observed, but did not lead to implant loss. The level of the most coronal bone-to-implant contact varied without being dependent on the use of BCP or a barrier membrane. In all groups, the BCP particles were not present deep in the bone-filled gap. However, BCP particles were seen at the crestal bone margin, where they were partly integrated in the new bone. CONCLUSIONS This new minipig model holds great promise for studying experimental ridge splitting/expansion. However, efforts must be undertaken to reduce implant exposure and buccal bone resorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical properties of human trabecular bone play an important role in age-related bone fragility and implant stability. Micro-finite element (microFE) analysis allows computing the apparent elastic properties of trabecular bone biopsies, but the results depend on the type of applied boundary conditions (BCs). In this study, 167 femoral trabecular cubic biopsies with a side length of 5.3 mm were analyzed using microFE analysis to compare their stiffness systematically with kinematic uniform boundary conditions (KUBCs) and periodicity-compatible mixed uniform boundary conditions (PMUBCs). The obtained elastic constants were then used in the volume fraction and fabric-based orthotropic Zysset-Curnier model to identify their respective model parameters. As expected, PMUBCs lead to more compliant apparent elastic properties than KUBCs, especially in shear. The differences in stiffness decreased with bone volume fraction and mean intercept length. Unlike KUBCs, PMUBCs were sensitive to heterogeneity of the biopsies. The Zysset-Curnier model predicted apparent elastic constants successfully in both cases with adjusted coefficients of determination of 0.986 for KUBCs and 0.975 for PMUBCs. The role of these boundary conditions in finite element analyses of whole bones and bone-implant systems will need to be investigated in future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabecular bone plays an important mechanical role in bone fractures and implant stability. Homogenized nonlinear finite element (FE) analysis of whole bones can deliver improved fracture risk and implant loosening assessment. Such simulations require the knowledge of mechanical properties such as an appropriate yield behavior and criterion for trabecular bone. Identification of a complete yield surface is extremely difficult experimentally but can be achieved in silico by using micro-FE analysis on cubical trabecular volume elements. Nevertheless, the influence of the boundary conditions (BCs), which are applied to such volume elements, on the obtained yield properties remains unknown. Therefore, this study compared homogenized yield properties along 17 load cases of 126 human femoral trabecular cubic specimens computed with classical kinematic uniform BCs (KUBCs) and a new set of mixed uniform BCs, namely periodicity-compatible mixed uniform BCs (PMUBCs). In stress space, PMUBCs lead to 7–72 % lower yield stresses compared to KUBCs. The yield surfaces obtained with both KUBCs and PMUBCs demonstrate a pressure-sensitive ellipsoidal shape. A volume fraction and fabric-based quadric yield function successfully fitted the yield surfaces of both BCs with a correlation coefficient R2≥0.93. As expected, yield strains show only a weak dependency on bone volume fraction and fabric. The role of the two BCs in homogenized FE analysis of whole bones will need to be investigated and validated with experimental results at the whole bone level in future studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Discectomy and spinal fusion is the gold standard for spinal surgery to relieve pain. However, fusion can be hindered for yet unknown reasons that lead to non-fusions with pseudo-arthrose. It is hence appealing to develop biomaterials that can enhance bone formation. Clinical observations indicate that presence of residual intervertebral disc (IVD) tissue might hinder the ossification. We hypothesize that BMP-antagonists are constantly secreted by IVD cells and potentially prevent the ossification process. Furthermore, L51P, the engineered BMP2 variant, stimulates osteoinduction of bone marrow-derived mesenchymal stem cells (MSC) by antagonizing BMP-inhibitors. Methods: Human MSCs, primary nucleus pulposus (NPC) and annulus pulposus cells (AFC) were isolated and expanded in monolayer cultures up to passage 3. IVD cells were seeded in 1.2% alginate beads (4Mio/mL) and separated by culture inserts from MSCs in a co-culture set-up. MSCs were kept in 1:control medium, 2:osteogenic medium+alginate control, 3:osteogenic medium+NPC (±L51P) and 4:osteogenic medium+AFC (±L51P) for 21 days. Relative gene expression of bone-related genes, Alkaline Phosphatase (ALP) assay and histological staining were performed. Results: Osteogenesis of MSCs was hindered as shown by reduced alizarin red staining in the presence of NPC. No such inhibition was observed if co-cultured with alginate only or in the presence of AFC. The results were confirmed on the RNA and protein level. Addition of L51P to the co-cultures induced mineralization of MSCs, however a reduced ALP was observed. Conclusion: We demonstrated that NPC secrete BMP-antagonists that prevent osteogenesis of MSCs and L51P can antagonize BMP-antagonists and induce bone formation.