16 resultados para BLANK FIELD SOURCES

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Covert brain activity related to task-free, spontaneous (i.e. unrequested), emotional evaluation of human face images was analysed in 27-channel averaged event-related potential (ERP) map series recorded from 18 healthy subjects while observing random sequences of face images without further instructions. After recording, subjects self-rated each face image on a scale from “liked” to “disliked”. These ratings were used to dichotomize the face images into the affective evaluation categories of “liked” and “disliked” for each subject and the subjects into the affective attitudes of “philanthropists” and “misanthropists” (depending on their mean rating across images). Event-related map series were averaged for “liked” and “disliked” face images and for “philanthropists” and “misanthropists”. The spatial configuration (landscape) of the electric field maps was assessed numerically by the electric gravity center, a conservative estimate of the mean location of all intracerebral, active, electric sources. Differences in electric gravity center location indicate activity of different neuronal populations. The electric gravity center locations of all event-related maps were averaged over the entire stimulus-on time (450 ms). The mean electric gravity center for disliked faces was located (significant across subjects) more to the right and somewhat more posterior than for liked faces. Similar differences were found between the mean electric gravity centers of misanthropists (more right and posterior) and philanthropists. Our neurophysiological findings are in line with neuropsychological findings, revealing visual emotional processing to depend on affective evaluation category and affective attitude, and extending the conclusions to a paradigm without directed task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results from the international field campaign DAURE (Detn. of the sources of atm. Aerosols in Urban and Rural Environments in the Western Mediterranean), with the objective of apportioning the sources of fine carbonaceous aerosols. Submicron fine particulate matter (PM1) samples were collected during Feb.-March 2009 and July 2009 at an urban background site in Barcelona (BCN) and at a forested regional background site in Montseny (MSY). We present radiocarbon (14C) anal. for elemental and org. carbon (EC and OC) and source apportionment for these data. We combine the results with those from component anal. of aerosol mass spectrometer (AMS) measurements, and compare to levoglucosan-based ests. of biomass burning OC, source apportionment of filter data with inorg. compn. + EC + OC, submicron bulk potassium (K) concns., and gaseous acetonitrile concns. At BCN, 87 % and 91 % of the EC on av., in winter and summer, resp., had a fossil origin, whereas at MSY these fractions were 66 % and 79 %. The contribution of fossil sources to org. carbon (OC) at BCN was 40 % and 48 %, in winter and summer, resp., and 31 % and 25 % at MSY. The combination of results obtained using the 14C technique, AMS data, and the correlations between fossil OC and fossil EC imply that the fossil OC at Barcelona is ∼47 % primary whereas at MSY the fossil OC is mainly secondary (∼85 %). Day-to-day variation in total carbonaceous aerosol loading and the relative contributions of different sources predominantly depended on the meteorol. transport conditions. The estd. biogenic secondary OC at MSY only increased by ∼40 % compared to the order-of-magnitude increase obsd. for biogenic volatile org. compds. (VOCs) between winter and summer, which highlights the uncertainties in the estn. of that component. Biomass burning contributions estd. using the 14C technique ranged from similar to slightly higher than when estd. using other techniques, and the different estns. were highly or moderately correlated. Differences can be explained by the contribution of secondary org. matter (not included in the primary biomass burning source ests.), and/or by an over-estn. of the biomass burning OC contribution by the 14C technique if the estd. biomass burning EC/OC ratio used for the calcns. is too high for this region. Acetonitrile concns. correlate well with the biomass burning EC detd. by 14C. K is a noisy tracer for biomass burning. [on SciFinder(R)]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposimeters are increasingly applied in bioelectromagnetic research to determine personal radiofrequency electromagnetic field (RF-EMF) exposure. The main advantages of exposimeter measurements are their convenient handling for study participants and the large amount of personal exposure data, which can be obtained for several RF-EMF sources. However, the large proportion of measurements below the detection limit is a challenge for data analysis. With the robust ROS (regression on order statistics) method, summary statistics can be calculated by fitting an assumed distribution to the observed data. We used a preliminary sample of 109 weekly exposimeter measurements from the QUALIFEX study to compare summary statistics computed by robust ROS with a naïve approach, where values below the detection limit were replaced by the value of the detection limit. For the total RF-EMF exposure, differences between the naïve approach and the robust ROS were moderate for the 90th percentile and the arithmetic mean. However, exposure contributions from minor RF-EMF sources were considerably overestimated with the naïve approach. This results in an underestimation of the exposure range in the population, which may bias the evaluation of potential exposure-response associations. We conclude from our analyses that summary statistics of exposimeter data calculated by robust ROS are more reliable and more informative than estimates based on a naïve approach. Nevertheless, estimates of source-specific medians or even lower percentiles depend on the assumed data distribution and should be considered with caution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radio frequency electromagnetic fields (RF-EMF) in our daily life are caused by numerous sources such as fixed site transmitters (e.g. mobile phone base stations) or indoor devices (e.g. cordless phones). The objective of this study was to develop a prediction model which can be used to predict mean RF-EMF exposure from different sources for a large study population in epidemiological research. We collected personal RF-EMF exposure measurements of 166 volunteers from Basel, Switzerland, by means of portable exposure meters, which were carried during one week. For a validation study we repeated exposure measurements of 31 study participants 21 weeks after the measurements of the first week on average. These second measurements were not used for the model development. We used two data sources as exposure predictors: 1) a questionnaire on potentially exposure relevant characteristics and behaviors and 2) modeled RF-EMF from fixed site transmitters (mobile phone base stations, broadcast transmitters) at the participants' place of residence using a geospatial propagation model. Relevant exposure predictors, which were identified by means of multiple regression analysis, were the modeled RF-EMF at the participants' home from the propagation model, housing characteristics, ownership of communication devices (wireless LAN, mobile and cordless phones) and behavioral aspects such as amount of time spent in public transports. The proportion of variance explained (R2) by the final model was 0.52. The analysis of the agreement between calculated and measured RF-EMF showed a sensitivity of 0.56 and a specificity of 0.95 (cut-off: 90th percentile). In the validation study, the sensitivity and specificity of the model were 0.67 and 0.96, respectively. We could demonstrate that it is feasible to model personal RF-EMF exposure. Most importantly, our validation study suggests that the model can be used to assess average exposure over several months.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present chapter gives a comprehensive introduction into the display and quantitative characterization of scalp field data. After introducing the construction of scalp field maps, different interpolation methods, the effect of the recording reference and the computation of spatial derivatives are discussed. The arguments raised in this first part have important implications for resolving a potential ambiguity in the interpretation of differences of scalp field data. In the second part of the chapter different approaches for comparing scalp field data are described. All of these comparisons can be interpreted in terms of differences of intracerebral sources either in strength, or in location and orientation in a nonambiguous way. In the present chapter we only refer to scalp field potentials, but mapping also can be used to display other features, such as power or statistical values. However, the rules for comparing and interpreting scalp field potentials might not apply to such data. Generic form of scalp field data Electroencephalogram (EEG) and event-related potential (ERP) recordings consist of one value for each sample in time and for each electrode. The recorded EEG and ERP data thus represent a two-dimensional array, with one dimension corresponding to the variable “time” and the other dimension corresponding to the variable “space” or electrode. Table 2.1 shows ERP measurements over a brief time period. The ERP data (averaged over a group of healthy subjects) were recorded with 19 electrodes during a visual paradigm. The parietal midline Pz electrode has been used as the reference electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High density spatial and temporal sampling of EEG data enhances the quality of results of electrophysiological experiments. Because EEG sources typically produce widespread electric fields (see Chapter 3) and operate at frequencies well below the sampling rate, increasing the number of electrodes and time samples will not necessarily increase the number of observed processes, but mainly increase the accuracy of the representation of these processes. This is namely the case when inverse solutions are computed. As a consequence, increasing the sampling in space and time increases the redundancy of the data (in space, because electrodes are correlated due to volume conduction, and time, because neighboring time points are correlated), while the degrees of freedom of the data change only little. This has to be taken into account when statistical inferences are to be made from the data. However, in many ERP studies, the intrinsic correlation structure of the data has been disregarded. Often, some electrodes or groups of electrodes are a priori selected as the analysis entity and considered as repeated (within subject) measures that are analyzed using standard univariate statistics. The increased spatial resolution obtained with more electrodes is thus poorly represented by the resulting statistics. In addition, the assumptions made (e.g. in terms of what constitutes a repeated measure) are not supported by what we know about the properties of EEG data. From the point of view of physics (see Chapter 3), the natural “atomic” analysis entity of EEG and ERP data is the scalp electric field

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on pre-service teacher internships has become a dynamic area of investigation in teacher education whose growth seems to correspond with increased activity at the institutional level over the past two decades. Introducing or expanding field experiences has been a common strategy in nearly all teacher education programs for the last twenty years, and reforming teacher education with a focus on its practical aspects still ranks near the top of education policy agendas. This article provides an introduction to the research field, addressing five basic issues: (1) precision in the definition of the construct, (2) main sources of research literature, (3) elaboration of the construct in terms of effects and mediating variables, (4) the methodological challenges of empirical research, and (5) major areas of future research. Emphasis is placed on the often ignored aspect that internships elicit both intended and unintended effects, including not only positive but also adverse side effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High brightness electron sources are of great importance for the operation of the hard X-ray free electron lasers. Field emission cathodes based on the double-gate metallic field emitter arrays (FEAs) can potentially offer higher brightness than the currently used ones. We report on the successful application of electron beam lithography for fabrication of the large-scale single-gate as well as double-gate FEAs. We demonstrate operational high-density single-gate FEAs with sub-micron pitch and total number of tips up to 106 as well as large-scale double-gate FEAs with large collimation gate apertures. The details of design, fabrication procedure and successful measurements of the emission current from the single- and double-gate cathodes are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DAURE (Determination of the Sources of Atmospheric Aerosols in Urban and Rural Environments in the Western Mediterranean) was a multidisciplinary international field campaign aimed at investigating the sources and meteorological controls of particulate matter in the Western Mediterranean Basin (WMB). Measurements were simultaneously performed at an urban-coastal (Barcelona, BCN) and a rural-elevated (Montseny, MSY) site pair in NE Spain during winter and summer. State-of-the-art methods such as 14C analysis, proton-transfer reaction mass spectrometry, and high-resolution aerosol mass spectrometry were applied for the first time in the WMB as part of DAURE. WMB regional pollution episodes were associated with high concentrations of inorganic and organic species formed during the transport to inland areas and built up at regional scales. Winter pollutants accumulation depended on the degree of regional stagnation of an air mass under anticyclonic conditions and the planetary boundary layer height. In summer, regional recirculation and biogenic secondary organic aerosols (SOA) formation mainly determined the regional pollutant concentrations. The contribution from fossil sources to organic carbon (OC) and elemental carbon (EC) and hydrocarbon-like organic aerosol concentrations were higher at BCN compared with MSY due to traffic emissions. The relative contribution of nonfossil OC was higher at MSY especially in summer due to biogenic emissions. The fossil OC/EC ratio at MSY was twice the corresponding ratio at BCN indicating that a substantial fraction of fossil OC was due to fossil SOA. In winter, BCN cooking emissions were identified as an important source of modern carbon in primary organic aerosol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain electric mechanisms of temporary, functional binding between brain regions are studied using computation of scalp EEG coherence and phase locking, sensitive to time differences of few milliseconds. However, such results if computed from scalp data are ambiguous since electric sources are spatially oriented. Non-ambiguous results can be obtained using calculated time series of strength of intracerebral model sources. This is illustrated applying LORETA modeling to EEG during resting and meditation. During meditation, time series of LORETA model sources revealed a tendency to decreased left-right intracerebral coherence in the delta band, and to increased anterior-posterior intracerebral coherence in the theta band. An alternate conceptualization of functional binding is based on the observation that brain electric activity is discontinuous, i.e., that it occurs in chunks of up to about 100 ms duration that are detectable as quasi-stable scalp field configurations of brain electric activity, called microstates. Their functional significance is illustrated in spontaneous and event-related paradigms, where microstates associated with imagery- versus abstract-type mentation, or while reading positive versus negative emotion words showed clearly different regions of cortical activation in LORETA tomography. These data support the concept that complete brain functions of higher order such as a momentary thought might be incorporated in temporal chunks of processing in the range of tens to about 100 ms as quasi-stable brain states; during these time windows, subprocesses would be accepted as members of the ongoing chunk of processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conservation and monitoring of forest biodiversity requires reliable information about forest structure and composition at multiple spatial scales. However, detailed data about forest habitat characteristics across large areas are often incomplete due to difficulties associated with field sampling methods. To overcome this limitation we employed a nationally available light detection and ranging (LiDAR) remote sensing dataset to develop variables describing forest landscape structure across a large environmental gradient in Switzerland. Using a model species indicative of structurally rich mountain forests (hazel grouse Bonasa bonasia), we tested the potential of such variables to predict species occurrence and evaluated the additional benefit of LiDAR data when used in combination with traditional, sample plot-based field variables. We calibrated boosted regression trees (BRT) models for both variable sets separately and in combination, and compared the models’ accuracies. While both field-based and LiDAR models performed well, combining the two data sources improved the accuracy of the species’ habitat model. The variables retained from the two datasets held different types of information: field variables mostly quantified food resources and cover in the field and shrub layer, LiDAR variables characterized heterogeneity of vegetation structure which correlated with field variables describing the understory and ground vegetation. When combined with data on forest vegetation composition from field surveys, LiDAR provides valuable complementary information for encompassing species niches more comprehensively. Thus, LiDAR bridges the gap between precise, locally restricted field-data and coarse digital land cover information by reliably identifying habitat structure and quality across large areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efforts are ongoing to decrease the noise of the GRACE gravity field models and hence to arrive closer to the GRACE baseline. The most significant error sources belong the untreated errors in the observation data and the imperfections in the background models. The recent study (Bandikova&Flury,2014) revealed that the current release of the star camera attitude data (SCA1B RL02) contain noise systematically higher than expected by about a factor 3-4. This is due to an incorrect implementation of the algorithms for quaternion combination in the JPL processing routines. Generating improved SCA data requires that valid data from both star camera heads are available which is not always the case because the Sun and Moon at times blind one camera. In the gravity field modeling, the attitude data are needed for the KBR antenna offset correction and to orient the non-gravitational linear accelerations sensed by the accelerometer. Hence any improvement in the SCA data is expected to be reflected in the gravity field models. In order to quantify the effect on the gravity field, we processed one month of observation data using two different approaches: the celestial mechanics approach (AIUB) and the variational equations approach (ITSG). We show that the noise in the KBR observations and the linear accelerations has effectively decreased. However, the effect on the gravity field on a global scale is hardly evident. We conclude that, at the current level of accuracy, the errors seen in the temporal gravity fields are dominated by errors coming from sources other than the attitude data.