4 resultados para BIOPHYSICAL PROFILE SCORE
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND Muscle strength greatly influences gait kinematics. The question was whether this association is similar in different diseases. METHODS Data from instrumented gait analysis of 716 patients were retrospectively assessed. The effect of muscle strength on gait deviations, namely the gait profile score (GPS) was evaluated by means of generalised least square models. This was executed for seven different patient groups. The groups were formed according to the type of disease: orthopaedic/neurologic, uni-/bilateral affection, and flaccid/spastic muscles. RESULTS Muscle strength had a negative effect on GPS values, which did not significantly differ amongst the different patient groups. However, an offset of the GPS regression line was found, which was mostly dependent on the basic disease. Surprisingly, spastic patients, who have reduced strength and additionally spasticity in clinical examination, and flaccid neurologic patients showed the same offset. Patients with additional lack of trunk control (Tetraplegia) showed the largest offset. CONCLUSION Gait kinematics grossly depend on muscle strength. This was seen in patients with very different pathologies. Nevertheless, optimal correction of biomechanics and muscle strength may still not lead to a normal gait, especially in that of neurologic patients. The basic disease itself has an additional effect on gait deviations expressed as a GPS-offset of the linear regression line.
Resumo:
Homeorhetic and homeostatic controls in dairy cows are essential for adapting to alterations in physiological and environmental conditions. To study the different mechanisms during adaptation processes, effects of a deliberately induced negative energy balance (NEB) by feed restriction near 100 d in milk (DIM) on performance and metabolic measures were compared with lactation energy deficiency after parturition. Fifty multiparous cows were studied in 3 periods (1=early lactation up to 12 wk postpartum; 2=feed restriction for 3 wk beginning at 98+/-7 DIM with a feed-restricted and control group; and 3=a subsequent realimentation period for the feed-restricted group for 8 wk). In period 1, despite NEB in early lactation [-42 MJ of net energy for lactation (NE(L))/d, wk 1 to 3] up to wk 9, milk yield increased from 27.5+/-0.7 kg to a maximum of 39.5+/-0.8 kg (wk 6). For period 2, the NEB was induced by individual limitation of feed quantity and reduction of dietary energy density. Feed-restricted cows experienced a greater NEB (-63 MJ of NEL/d) than did cows in early lactation. Feed-restricted cows in period 2 showed only a small decline in milk yield of -3.1+/-1.1 kg and milk protein content of -0.2+/-0.1% compared with control cows (30.5+/-1.1 kg and 3.8+/-0.1%, respectively). In feed-restricted cows (period 2), plasma glucose was lower (-0.2+/-0.0 mmol/L) and nonesterified fatty acids higher (+0.1+/-0.1 mmol/L) compared with control cows. Compared with the NEB in period 1, the decreases in body weight due to the deliberately induced NEB (period 2) were greater (56+/-4 vs. 23+/-3 kg), but decreases in body condition score (0.16+/-0.03 vs. 0.34+/-0.04) and muscle diameter (2.0+/-0.4 vs. 3.5+/-0.4 mm) were lesser. The changes in metabolic measures in period 2 were marginal compared with the adjustments directly after parturition in period 1. Despite the greater induced energy deficiency at 100 DIM than the early lactation NEB, the metabolic load experienced by the dairy cows was not as high as that observed in early lactation. The different effects of energy deficiency at the 2 stages in lactation show that metabolic problems in early lactating dairy cows are not due only to the NEB, but mainly to the specific metabolic regulation during this period.
Resumo:
OBJECTIVES To assess the clinical profile and long-term mortality in SYNTAX score II based strata of patients who received percutaneous coronary interventions (PCI) in contemporary randomized trials. BACKGROUND The SYNTAX score II was developed in the randomized, all-comers' SYNTAX trial population and is composed by 2 anatomical and 6 clinical variables. The interaction of these variables with the treatment provides individual long-term mortality predictions if a patient undergoes coronary artery bypass grafting (CABG) or PCI. METHODS Patient-level (n=5433) data from 7 contemporary coronary drug-eluting stent (DES) trials were pooled. The mortality for CABG or PCI was estimated for every patient. The difference in mortality estimates for these two revascularization strategies was used to divide the patients into three groups of theoretical treatment recommendations: PCI, CABG or PCI/CABG (the latter means equipoise between CABG and PCI for long term mortality). RESULTS The three groups had marked differences in their baseline characteristics. According to the predicted risk differences, 5115 patients could be treated either by PCI or CABG, 271 should be treated only by PCI and, rarely, CABG (n=47) was recommended. At 3-year follow-up, according to the SYNTAX score II recommendations, patients recommended for CABG had higher mortality compared to the PCI and PCI/CABG groups (17.4%; 6.1% and 5.3%, respectively; P<0.01). CONCLUSIONS The SYNTAX score II demonstrated capability to help in stratifying PCI procedures.
Resumo:
AIMS A non-invasive gene-expression profiling (GEP) test for rejection surveillance of heart transplant recipients originated in the USA. A European-based study, Cardiac Allograft Rejection Gene Expression Observational II Study (CARGO II), was conducted to further clinically validate the GEP test performance. METHODS AND RESULTS Blood samples for GEP testing (AlloMap(®), CareDx, Brisbane, CA, USA) were collected during post-transplant surveillance. The reference standard for rejection status was based on histopathology grading of tissue from endomyocardial biopsy. The area under the receiver operating characteristic curve (AUC-ROC), negative (NPVs), and positive predictive values (PPVs) for the GEP scores (range 0-39) were computed. Considering the GEP score of 34 as a cut-off (>6 months post-transplantation), 95.5% (381/399) of GEP tests were true negatives, 4.5% (18/399) were false negatives, 10.2% (6/59) were true positives, and 89.8% (53/59) were false positives. Based on 938 paired biopsies, the GEP test score AUC-ROC for distinguishing ≥3A rejection was 0.70 and 0.69 for ≥2-6 and >6 months post-transplantation, respectively. Depending on the chosen threshold score, the NPV and PPV range from 98.1 to 100% and 2.0 to 4.7%, respectively. CONCLUSION For ≥2-6 and >6 months post-transplantation, CARGO II GEP score performance (AUC-ROC = 0.70 and 0.69) is similar to the CARGO study results (AUC-ROC = 0.71 and 0.67). The low prevalence of ACR contributes to the high NPV and limited PPV of GEP testing. The choice of threshold score for practical use of GEP testing should consider overall clinical assessment of the patient's baseline risk for rejection.