21 resultados para BIOLOGICAL TISSUE
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
PURPOSE To determine whether particulate debris is present in periprosthetic tissue from revised Dynesys(®) devices, and if present, elicits a biological tissue reaction. METHODS Five Dynesys(®) dynamic stabilization systems consisting of pedicle screws (Ti alloy), polycarbonate-urethane (PCU) spacers and a polyethylene-terephthalate (PET) cord were explanted for pain and screw loosening after a mean of 2.86 years (1.9-5.3 years). Optical microscopy and scanning electron microscopy were used to evaluate wear, deformation and surface damage, and attenuated total reflectance Fourier transform infrared spectroscopy to assess surface chemical composition of the spacers. Periprosthetic tissue morphology and wear debris were determined using light microscopy, and PCU and PET wear debris by polarized light microscopy. RESULTS All implants had surface damage on the PCU spacers consistent with scratches and plastic deformation; 3 of 5 exhibited abrasive wear zones. In addition to fraying of the outer fibers of the PET cords in five implants, one case also evidenced cord fracture. The pedicle screws were unremarkable. Patient periprosthetic tissues around the three implants with visible PCU damage contained wear debris and a corresponding macrophage infiltration. For the patient revised for cord fracture, the tissues also contained large wear particles (>10 μm) and giant cells. Tissues from the other two patients showed comparable morphologies consisting of dense fibrous tissue with no inflammation or wear debris. CONCLUSIONS This is the first study to evaluate wear accumulation and local tissue responses for explanted Dynesys(®) devices. Polymer wear debris and an associated foreign-body macrophage response were observed in three of five cases.
Resumo:
The optical quality of the human eye mainly depends on the refractive performance of the cornea. The shape of the cornea is a mechanical balance between intraocular pressure and tissue intrinsic stiffness. Several surgical procedures in ophthalmology alter the biomechanics of the cornea to provoke local or global curvature changes for vision correction. Legitimated by the large number of surgical interventions performed every day, the demand for a deeper understanding of corneal biomechanics is rising to improve the safety of procedures and medical devices. The aim of our work is to propose a numerical model of corneal biomechanics, based on the stromal microstructure. Our novel anisotropic constitutive material law features a probabilistic weighting approach to model collagen fiber distribution as observed on human cornea by Xray scattering analysis (Aghamohammadzadeh et. al., Structure, February 2004). Furthermore, collagen cross-linking was explicitly included in the strain energy function. Results showed that the proposed model is able to successfully reproduce both inflation and extensiometry experimental data (Elsheikh et. al., Curr Eye Res, 2007; Elsheikh et. al., Exp Eye Res, May 2008). In addition, the mechanical properties calculated for patients of different age groups (Group A: 65-79 years; Group B: 80-95 years) demonstrate an increased collagen cross-linking, and a decrease in collagen fiber elasticity from younger to older specimen. These findings correspond to what is known about maturing fibrous biological tissue. Since the presented model can handle different loading situations and includes the anisotropic distribution of collagen fibers, it has the potential to simulate clinical procedures involving nonsymmetrical tissue interventions. In the future, such mechanical model can be used to improve surgical planning and the design of next generation ophthalmic devices.
Resumo:
All preparation efforts of biological samples in electron microscopy are focused to preserve structures as close as possible to the native state. To achieve this goal with tissues, it is of advantage to have a very short time between excision and fixation. The most common approach is chemical fixation: cross-linking of the tissue samples with aldehydes followed by postfixation with osmium tetroxide. Here, the fastest approach for tissue samples is perfusion. However, the diffusion of the fixation solution from blood vessels into the depth of the tissue is still slow and does not allow an overall instant fixation of a single cell. As a result, osmotic effects become evident (swelling or shrinkage of cell organelles). Another possibility is to take a tissue sample from the experimental animal. Excision of tissue can last quite some time, which results in even more pronounced autolytic induced osmotic effects. Furthermore, the animal does not survive the procedure in most cases. Alternatively, microbiopsies are an elegant technique to rapidly excise small quantities of tissue. Some tissues, such as liver and muscle, may be obtained using a non-lethal approach. To avoid the artifacts introduced by chemical fixation, high-pressure freezing of microbiopsies (brain, liver, kidney, and muscle) is a powerful alternative to chemical fixation. Here, we describe the microbiopsy method, and high-pressure freezing/freeze-substitution (HPF/FS) as a follow-up procedure. Cryosectioning of high-pressure frozen samples is optimally preserving the ultrastructure; however, it is not considered to be a routine approach yet.
Resumo:
A transmission electron microscope (TEM) accessory, the energy filter, enables the establishment of a method for elemental microanalysis, the electron energy-loss spectroscopy (EELS). In conventional TEM, unscattered, elastic, and inelastic scattered electrons contribute to image information. Energy-filtering TEM (EFTEM) allows elemental analysis at the ultrastructural level by using selected inelastic scattered electrons. EELS is an excellent method for elemental microanalysis and nanoanalysis with good sensitivity and accuracy. However, it is a complex method whose potential is seldom completely exploited, especially for biological specimens. In addition to spectral analysis, parallel-EELS, we present two different imaging techniques in this chapter, namely electron spectroscopic imaging (ESI) and image-EELS. We aim to introduce these techniques in this chapter with the elemental microanalysis of titanium. Ultrafine, 22-nm titanium dioxide particles are used in an inhalation study in rats to investigate the distribution of nanoparticles in lung tissue.
Resumo:
Live vaccines possess the advantage of having access to induce cell-mediated and antibody-mediated immunity; thus in certain cases they are able to prevent infection, and not only disease. Furthermore, live vaccines, particularly bacterial live vaccines, are relatively cheap to produce and easy to apply. Hence they are suitable to immunize large communities or herds. The induction of both cell-mediated immunity as well as antibody-mediated immunity, which is particularly beneficial in inducing mucosal immune responses, is obtained by the vaccine-strain's ability to colonize and multiply in the host without causing disease. For this reason, live vaccines require attenuation of virulence of the bacterium to which immunity must be induced. Traditionally attenuation was achieved simply by multiple passages of the microorganism on growth medium, in animals, eggs or cell cultures or by chemical or physical mutagenesis, which resulted in random mutations that lead to attenuation. In contrast, novel molecular methods enable the development of genetically modified organisms (GMOs) targeted to specific genes that are particularly suited to induce attenuation or to reduce undesirable effects in the tissue in which the vaccine strains can multiply and survive. Since live vaccine strains (attenuated by natural selection or genetic engineering) are potentially released into the environment by the vaccinees, safety issues concerning the medical as well as environmental aspects must be considered. These involve (i) changes in cell, tissue and host tropism, (ii) virulence of the carrier through the incorporation of foreign genes, (iii) reversion to virulence by acquisition of complementation genes, (iv) exchange of genetic information with other vaccine or wild-type strains of the carrier organism and (v) spread of undesired genes such as antibiotic resistance genes. Before live vaccines are applied, the safety issues must be thoroughly evaluated case-by-case. Safety assessment includes knowledge of the precise function and genetic location of the genes to be mutated, their genetic stability, potential reversion mechanisms, possible recombination events with dormant genes, gene transfer to other organisms as well as gene acquisition from other organisms by phage transduction, transposition or plasmid transfer and cis- or trans-complementation. For this, GMOs that are constructed with modern techniques of genetic engineering display a significant advantage over random mutagenesis derived live organisms. The selection of suitable GMO candidate strains can be made under in vitro conditions using basic knowledge on molecular mechanisms of pathogenicity of the corresponding bacterial species rather than by in vivo testing of large numbers of random mutants. This leads to a more targeted safety testing on volunteers and to a reduction in the use of animal experimentation.
Resumo:
Neonatal cattle and in part neonates of other species have manyfold higher plasma concentrations of nitrite plus nitrate than mature cows and subjects of other species, suggesting an enhanced and needed activation of the nitric oxide (NO) axis at birth. While the biological half-life of NO is short (<1 sec), its functionality can be prolonged, and in many regards more discretely modulated, when it reacts with low-molecular-weight and protein-bound thiols to form S-nitrosothiols (RSNO), from which NO subsequently can be rereleased. We used the calf as a model to test the hypothesis that plasma concentrations of RSNO are elevated at birth in mammals, correlate with ascorbate and urate levels, are selectively generated in critical tissue beds, and are generated in a manner temporally coincident with changes in tissue levels of active NO synthases (NOS). Plasma concentrations of RSNO, ascorbate, and urate were highest immediately after birth (Day 0), dropped >50% on Day 1, and gradually decreased over time, reaching a nadir in mature cattle. Albumin and immunoglobulin G were identified as major plasma RSNO. The presence of S-nitrosocysteine (SNC, a validated marker for S-nitrosylated proteins), inducible NOS (iNOS), and activated endothelial NOS (eNOS phosphorylated at Ser1177) in different tissues was analyzed by immunohistochemistry in another group of similar-aged calves. SNC, iNOS, and phosphorylated eNOS were detected in liver and ileum at the earliest timepoint of sampling (4 hrs after birth), increased between 4 and 24 hrs, and then declined to near-nondetectable levels by 2 weeks of life. Our data show that the neonatal period in the bovine species is characterized by highly elevated and coordinated NO-generating and nitrosylation events, with the ontogenetic changes occurring in iNOS and eNOS contents in key tissues as well as RSNO products and associated antioxidant markers.
Resumo:
Although rare, stent thrombosis remains a severe complication after stent implantation owing to its high morbidity and mortality. Since the introduction of drug-eluting stents (DES), most interventional centers have noted stent thrombosis up to 3 years after implantation, a complication rarely seen with bare-metal stents. Some data from large registries and meta-analyses of randomized trials indicate a higher risk for DES thrombosis, whereas others suggest an absence of such a risk. Several factors are associated with an increased risk of stent thrombosis, including the procedure itself (stent malapposition and/or underexpansion, number of implanted stents, stent length, persistent slow coronary blood flow, and dissections), patient and lesion characteristics, stent design, and premature cessation of antiplatelet drugs. Drugs released from DES exert distinct biological effects, such as activation of signal transduction pathways and inhibition of cell proliferation. As a result, although primarily aimed at preventing vascular smooth muscle cell proliferation and migration (ie, key factors in the development of restenosis), they also impair reendothelialization, which leads to delayed arterial healing, and induce tissue factor expression, which results in a prothrombogenic environment. In the same way, polymers used to load these drugs have been associated with DES thrombosis. Finally, DES impair endothelial function of the coronary artery distal to the stent, which potentially promotes the risk of ischemia and coronary occlusion. Although several reports raise the possibility of a substantially higher risk of stent thrombosis in DES, evidence remains inconclusive; as a consequence, both large-scale and long-term clinical trials, as well as further mechanistic studies, are needed. The present review focuses on the pathophysiological mechanisms and pathological findings of stent thrombosis in DES.
Resumo:
BACKGROUND: Despite a large body of clinical and histological data demonstrating beneficial effects of enamel matrix proteins (EMPs) for regenerative periodontal therapy, it is less clear how the available biological data can explain the mechanisms underlying the supportive effects of EMPs. OBJECTIVE: To analyse all available biological data of EMPs at the cellular and molecular levels that are relevant in the context of periodontal wound healing and tissue formation. METHODS: A stringent systematic approach was applied using the key words "enamel matrix proteins" OR "enamel matrix derivative" OR "emdogain" OR "amelogenin". The literature search was performed separately for epithelial cells, gingival fibroblasts, periodontal ligament cells, cementoblasts, osteogenic/chondrogenic/bone marrow cells, wound healing, and bacteria. RESULTS: A total of 103 papers met the inclusion criteria. EMPs affect many different cell types. Overall, the available data show that EMPs have effects on: (1) cell attachment, spreading, and chemotaxis; (2) cell proliferation and survival; (3) expression of transcription factors; (4) expression of growth factors, cytokines, extracellular matrix constituents, and other macromolecules; and (5) expression of molecules involved in the regulation of bone remodelling. CONCLUSION: All together, the data analysis provides strong evidence for EMPs to support wound healing and new periodontal tissue formation.
Resumo:
Despite the improvements in cancer therapy during the past years, high-grade gliomas and many other types of cancer are still extremely resistant to current forms of therapy. Boron neutron capture therapy (BNCT) provides a promising way to destroy cancer cells without damaging healthy tissue. However, BNCT in practice is still limited due to the lack of boron-containing compounds that selectively deliver boron to cancer cells. Since many neuroendocrine tumors show an overexpression of the somatostatin receptor, it was our aim to synthesize compounds that contain a large number of boron atoms and still show high affinity toward this transmembrane receptor. The synthetic peptide Tyr (3)-octreotate (TATE) was chosen as a high-affinity and internalizing tumor targeting vector (TTV). Novel boron cluster compounds, containing 10 or 20 boron atoms, were coupled to the N-terminus of TATE. The obtained affinity data demonstrate that the use of a spacer between TATE and the closo-borane moiety is the option to avoid a loss of biological affinity of closo-borane conjugated TATE. For the first time, it was shown that closo-borane conjugated regulatory peptides retain high biological affinity and selectivity toward their transmembrane tumor receptors. The results obtained and the improvement of spacer and boron building block chemistry may stimulate new directions for BNCT.
Resumo:
BACKGROUND: Diagnosis and prognosis in breast cancer are mainly based on histology and immunohistochemistry of formalin-fixed, paraffin-embedded (FFPE) material. Recently, gene expression analysis was shown to elucidate the biological variance between tumors and molecular markers were identified that led to new classification systems that provided better prognostic and predictive parameters. Archived FFPE samples represent an ideal source of tissue for translational research, as millions of tissue blocks exist from routine diagnostics and from clinical studies. These should be exploited to provide clinicians with more accurate prognostic and predictive information. Unfortunately, RNA derived from FFPE material is partially degraded and chemically modified and reliable gene expression measurement has only become successful after implementing novel and optimized procedures for RNA isolation, demodification and detection. METHODS: In this study we used tissue cylinders as known from the construction of tissue microarrays. RNA was isolated with a robust protocol recently developed for RNA derived from FFPE material. Gene expression was measured by quantitative reverse transcription PCR. RESULTS: Sixteen tissue blocks from 7 patients diagnosed with multiple histological subtypes of breast cancer were available for this study. After verification of appropriate localization, sufficient RNA yield and quality, 30 tissue cores were available for gene expression measurement on TaqMan(R) Low Density Arrays (16 invasive ductal carcinoma (IDC), 8 ductal carcinoma in situ (DCIS) and 6 normal tissue), and 14 tissue cores were lost. Gene expression values were used to calculate scores representing the proliferation status (PRO), the estrogen receptor status and the HER2 status. The PRO scores measured from entire sections were similar to PRO scores determined from IDC tissue cores. Scores determined from normal tissue cores consistently revealed lower PRO scores than cores derived from IDC or DCIS of the same block or from different blocks of the same patient. CONCLUSION: We have developed optimized protocols for RNA isolation from histologically distinct areas. RNA prepared from FFPE tissue cores is suitable for gene expression measurement by quantitative PCR. Distinct molecular scores could be determined from different cores of the same tumor specimen.
Resumo:
We have previously shown that proteins can be incorporated into the latticework of calcium phosphate layers when biomimetically coprecipitated with the inorganic components, upon the surfaces of titanium-alloy implants. In the present study, we wished to ascertain whether recombinant human bone morphogenetic protein 2 (rhBMP-2) thus incorporated retained its bioactivity as an osteoinductive agent. Titanium alloy implants were coated biomimetically with a layer of calcium phosphate in the presence of different concentrations of rhBMP-2 (0.1-10 microg/mL). rhBMP-2 was successfully incorporated into the crystal latticework, as revealed by protein blot staining. rhBMP-2 was taken up by the calcium phosphate coatings in a dose-dependent manner, as determined by ELISA. Rat bone marrow stromal cells were grown directly on these coatings for 8 days. Their osteogenicity was then assessed quantitatively by monitoring alkaline phosphatase activity. This parameter increased as a function of rhBMP-2 concentrations within the coating medium. rhBMP-2 incorporated into calcium phosphate coatings was more potent in stimulating the alkaline phosphatase activity of the adhering cell layer than was the freely suspended drug in stimulating that of cell layers grown on a plastic substratum. This system may be of osteoinductive value in orthopedic and dental implant surgery.
Resumo:
Radiation therapy remains an imperative treatment modality for numerous malignancies. Enduring significant technical achievements both on the levels of treatment planning and radiation delivery have led to improvements in local control of tumor growth and reduction in healthy tissue toxicity. Nevertheless, resistance mechanisms, which presumably also involve activation of DNA damage response signaling pathways that eventually may account for loco-regional relapse and consequent tumor progression, still remain a critical problem. Accumulating data suggest that signaling via growth factor receptor tyrosine kinases, which are aberrantly expressed in many tumors, may interfere with the cytotoxic impact of ionizing radiation via the direct activation of the DNA damage response, leading eventually to so-called tumor radioresistance. The aim of this review is to overview the current known data that support a molecular crosstalk between the hepatocyte growth factor receptor tyrosine kinase MET and the DNA damage response. Apart of extending well established concepts over MET biology beyond its function as a growth factor receptor, these observations directly relate to the role of its aberrant activity in resistance to DNA damaging agents, such as ionizing radiation, which are routinely used in cancer therapy and advocate tumor sensitization towards DNA damaging agents in combination with MET targeting.
Resumo:
In mammals milk is the principal nutrient for neonates at birth. The basic milk composition is similar between different mammals, but the content of individual constituents such as lipids may differ significantly from one species to another. The milk fat fraction is mainly composed of triglycerides which account for more than 95% of the lipids found in human and bovine milk. Though sterols and in particular cholesterol, the predominant milk sterol, represent less than 0.5% of the total milk lipid fraction, they are of ultimate importance for biological processes such as the formation of biological membranes or as precursors for steroid hormone synthesis. Cholesterol found in milk originates either from blood uptake or from local synthesis. This chapter provides an overview of cholesterol exchanges between the blood, the mammary tissue and the milk. The current knowledge on the expression, localization and function of candidate cholesterol transporters in mammary tissues of human, murine and bovine origin is summarized. Different mechanisms of how cholesterol can be transferred via the mammary tissue into milk, and which active cholesterol transporters are likely to play a role in this process will be discussed.
Resumo:
A microbiopsy system for fast excision and transfer of biological specimens from donor to high-pressure freezer was developed. With a modified, commercially available, Promag 1.2 biopsy gun, tissue samples can be excised with a size small enough (0.6 mm x 1.2 mm x 0.3 mm) to be easily transferred into a newly designed specimen platelet. A self-made transfer unit allows fast transfer of the specimen from the needle into the specimen platelet. The platelet is then fixed in a commercially available specimen holder of a high-pressure freezing machine (EM PACT, Leica Microsystems, Vienna, Austria) and frozen therein. The time required by a well-instructed (but not experienced) person to execute all steps is in the range of half a minute. This period is considered short enough to maintain the excised tissue pieces close to their native state. We show that a range of animal tissues (liver, brain, kidney and muscle) are well preserved. To prove the quality of freezing achieved with the system, we show vitrified ivy leaves high-pressure frozen in the new specimen platelet.
Resumo:
AIM To provide an overview on the biology and soft tissue wound healing around teeth and dental implants. MATERIAL AND METHODS This narrative review focuses on cell biology and histology of soft tissue wounds around natural teeth and dental implants. RESULTS AND CONCLUSIONS The available data indicate that: (a) Oral wounds follow a similar pattern. (b) The tissue specificities of the gingival, alveolar and palatal mucosa appear to be innately and not necessarily functionally determined. (c) The granulation tissue originating from the periodontal ligament or from connective tissue originally covered by keratinized epithelium has the potential to induce keratinization. However, it also appears that deep palatal connective tissue may not have the same potential to induce keratinization as the palatal connective tissue originating from an immediately subepithelial area. (d) Epithelial healing following non-surgical and surgical periodontal therapy appears to be completed after a period of 7–14 days. Structural integrity of a maturing wound between a denuded root surface and a soft tissue flap is achieved at approximately 14-days post-surgery. (e) The formation of the biological width and maturation of the barrier function around transmucosal implants requires 6–8 weeks of healing. (f) The established peri-implant soft connective tissue resembles a scar tissue in composition, fibre orientation, and vasculature. (g) The peri-implant junctional epithelium may reach a greater final length under certain conditions such as implants placed into fresh extraction sockets versus conventional implant procedures in healed sites.