6 resultados para BIOCHEMICAL-COMPOSITION
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Mesenchymal stem cells (MSCs) provide an important source of pluripotent cells for musculoskeletal tissue repair. This study examined the impact of MSC implantation on cartilage healing characteristics in a large animal model. Twelve full-thickness 15-mm cartilage lesions in the femoropatellar articulations of six young mature horses were repaired by injection of a self-polymerizing autogenous fibrin vehicle containing mesenchymal stem cells, or autogenous fibrin alone in control joints. Arthroscopic second look and defect biopsy was obtained at 30 days, and all animals were euthanized 8 months after repair. Cartilage repair tissue and surrounding cartilage were assessed by histology, histochemistry, collagen type I and type II immunohistochemistry, collagen type II in situ hybridization, and matrix biochemical assays. Arthroscopic scores for MSC-implanted defects were significantly improved at the 30-day arthroscopic assessment. Biopsy showed MSC-implanted defects contained increased fibrous tissue with several defects containing predominantly type II collagen. Long-term assessment revealed repair tissue filled grafted and control lesions at 8 months, with no significant difference between stem cell-treated and control defects. Collagen type II and proteoglycan content in MSC-implanted and control defects were similar. Mesenchymal stem cell grafts improved the early healing response, but did not significantly enhance the long-term histologic appearance or biochemical composition of full-thickness cartilage lesions.
Resumo:
Clinical magnetic resonance imaging (MRI) is the method of choice for the non-invasive evaluation of articular cartilage defects and the follow-up of cartilage repair procedures. The use of cartilage-sensitive sequences and a high spatial-resolution technique enables the evaluation of cartilage morphology even in the early stages of disease, as well as assessment of cartilage repair. Sequences that offer high contrast between articular cartilage and adjacent structures, such as the fat-suppressed, 3-dimensional, spoiled gradient-echo sequence and the fast spin-echo sequence, are accurate and reliable for evaluating intrachondral lesions and surface defects of articular cartilage. These sequences can also be performed together in reasonable examination times. In addition to morphology, new MRI techniques provide insight into the biochemical composition of articular cartilage and cartilage repair tissue. These techniques enable the diagnosis of early cartilage degeneration and help to monitor the effect and outcome of various surgical and non-surgical cartilage repair therapies.
Resumo:
Lateral segregation of cholesterol- and sphingomyelin-rich rafts and glycerophospholipid-containing non-raft microdomains has been proposed to play a role in a variety of biological processes. The most compelling evidence for membrane segregation is based on the observation that extraction with non-ionic detergents leads to solubilization of a subset of membrane components only. However, one decade later, a large body of inconsistent detergent-extraction data is threatening the very concept of membrane segregation. We have assessed the validity of the existing paradigms and we show the following. (i) The localization of a membrane component within a particular fraction of a sucrose gradient cannot be taken as a yardstick for its solubility: a variable localization of the DRMs (detergent-resistant membranes) in sucrose gradients is the result of complex associations between the membrane skeleton and the lipid bilayer. (ii) DRMs of variable composition can be generated by using a single detergent, the increasing concentration of which gradually extracts one protein/lipid after another. Therefore any extraction pattern obtained by a single concentration experiment is bound to be 'investigator-specific'. It follows that comparison of DRMs obtained by different detergents in a single concentration experiment is prone to misinterpretations. (iii) Depletion of cholesterol has a graded effect on membrane solubility. (iv) Differences in detergent solubility of the members of the annexin protein family arise from their association with chemically different membrane compartments; however, these cannot be attributed to the 'brick-like' raft-building blocks of fixed size and chemical composition. Our findings demonstrate a need for critical re-evaluation of the accumulated detergent-extraction data.
Resumo:
Morphological and biochemical magnetic resonance imaging (MRI) is due to high field MR systems, advanced coil technology, and sophisticated sequence protocols capable of visualizing articular cartilage in vivo with high resolution in clinical applicable scan time. Several conventional two-dimensional (2D) and three-dimensional (3D) approaches show changes in cartilage structure. Furthermore newer isotropic 3D sequences show great promise in improving cartilage imaging and additionally in diagnosing surrounding pathologies within the knee joint. Functional MR approaches are additionally able to provide a specific measure of the composition of cartilage. Cartilage physiology and ultra-structure can be determined, changes in cartilage macromolecules can be detected, and cartilage repair tissue can thus be assessed and potentially differentiated. In cartilage defects and following nonsurgical and surgical cartilage repair, morphological MRI provides the basis for diagnosis and follow-up evaluation, whereas biochemical MRI provides a deeper insight into the composition of cartilage and cartilage repair tissue. A combination of both, together with clinical evaluation, may represent a desirable multimodal approach in the future, also available in routine clinical use.
Resumo:
Biochemical maturation of the brain can be studied noninvasively by (1)H magnetic resonance spectroscopy (MRS) in human infants. Detailed time courses of cerebral tissue contents are known for the most abundant metabolites only, and whether or not premature birth affects biochemical maturation of the brain is disputed. Hence, the last trimester of gestation was observed in infants born prematurely, and their cerebral metabolite contents at birth and at expected term were compared with those of fullterm infants. Successful quantitative short-TE (1)H MRS was performed in three cerebral locations in 21 infants in 28 sessions (gestational age 32-43 weeks). The spectra were analyzed with linear combination model fitting, considerably extending the range of observable metabolites to include acetate, alanine, aspartate, cholines, creatines, gamma-aminobutyrate, glucose, glutamine, glutamate, glutathione, glycine, lactate, myo-inositol, macromolecular contributions, N-acetylaspartate, N-acetylaspartylglutamate, o-phosphoethanolamine, scyllo-inositol, taurine, and threonine. Significant effects of age and location were found for many metabolites, including the previously observed neuronal maturation reflected by an increase in N-acetylaspartate. Absolute brain metabolite content in premature infants at term was not considerably different from that in fullterm infants, indicating that prematurity did not affect biochemical brain maturation substantially in the studied population, which did not include infants of extremely low birthweight.
Resumo:
During Escherichia coli urinary tract infections, cells in the human urinary tract release the antimicrobial protein siderocalin (SCN; also known as lipocalin 2, neutrophil gelatinase-associated lipocalin/NGAL, or 24p3). SCN can interfere with E. coli iron acquisition by sequestering ferric iron complexes with enterobactin, the conserved E. coli siderophore. Here we find that human urinary constituents can reverse this relationship, instead making enterobactin critical for overcoming SCN-mediated growth restriction. Urinary control of SCN activity exhibits wide ranging individual differences. We used these differences to identify elevated urinary pH and aryl metabolites as key biochemical host factors controlling urinary SCN activity. These aryl metabolites are well-known products of intestinal microbial metabolism. Together, these results identify an innate antibacterial immune interaction that is critically dependent upon individualistic chemical features of human urine.