10 resultados para BEHAVIORAL-RESPONSES

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Bulimia nervosa (BN) has been associated with dysregulation of the central catecholaminergic system. An instructive way to investigate the relationship between catecholaminergic function and psychiatric disorder has involved behavioral responses to experimental catecholamine depletion (CD). The purpose of this study was to examine a possible catecholaminergic dysfunction in the pathogenesis of bulimia nervosa. METHODS: CD was achieved by oral administration of alpha-methyl-para-tyrosine (AMPT) in 18 remitted female subjects with BN (rBN) and 31 healthy female control subjects. The study design consisted of a randomized, double blind, placebo-controlled crossover, single-site experimental trial. The main outcome measures were bulimic symptoms assessed by the Eating Disorder Examination-Questionnaire. Measures were assessed before and 26, 30, 54, 78, 102 hours after the first AMPT or placebo administration. RESULTS: In the experimental environment (controlled environment with a low level of food cues) rBN subjects had a greater increase in eating disorder symptoms during CD compared with healthy control subjects (condition × diagnosis interaction, p < .05). In the experimental environment, rBN subjects experienced fewer bulimic symptoms than in the natural environment (uncontrolled environment concerning food cues) 36 hours after the first AMPT intake (environment × diagnosis interaction, p < .05). Serum prolactin levels increased significantly, and to a comparable degree across groups, after AMPT administration. CONCLUSIONS: This study suggests that rBN is associated with vulnerability for developing eating disorder symptoms in response to reduced catecholamine neurotransmission after CD. The findings support the notion of catecholaminergic dysfunction as a possible trait abnormality in BN.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Repeated exposure to psychomotor stimulants produces a striking behavioral syndrome involving repetitive, stereotypic behaviors that occur if an additional exposure to the stimulant is experienced. The same stimulant exposure produces specific alterations in gene expression patterns in the striatum. To identify the dopamine receptor subtypes required for the parallel expression of these acquired neural and behavioral responses, we treated rats with different D1-class and D2-class dopamine receptor agonists and compared the responses of drug-naive rats with those of rats given previous intermittent treatment with cocaine. In rats exposed to repeated cocaine treatment, the effects of a subsequent challenge treatment with either a D1-class agonist (SKF 81297) or a D2-class agonist (quinpirole) were not significantly different from those observed in drug-naive animals: the drugs administered singly did not induce robust stereotyped motor behaviors nor produce significantly striosome-predominant expression of early genes in the striatum. In contrast, challenge treatment with the D1-class and D2-class agonists in combination led to marked and correlated increases in stereotypy and striosome-predominant gene expression in the striatum. Thus, immediately after repeated psychomotor stimulant exposure, only the concurrent activation of D1 and D2 receptor subclasses evoked expression of the neural and behavioral phenotypes acquired through repeated cocaine exposure. These findings suggest that D1-D2 dopamine receptor synergisms underlie the coordinate expression of both network-level changes in basal ganglia activation patterns and the repetitive and stereotypic motor response patterns characteristic of psychomotor stimulant sensitization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Indirect plant-mediated interactions between herbivores are important drivers of community composition in terrestrial ecosystems. Among the most striking examples are the strong indirect interactions between spatially separated leaf- and root-feeding insects sharing a host plant. Although leaf feeders generally reduce the performance of root herbivores, little is known about the underlying systemic changes in root physiology and the associated behavioral responses of the root feeders. We investigated the consequences of maize (Zea mays) leaf infestation by Spodoptera littoralis caterpillars for the root-feeding larvae of the beetle Diabrotica virgifera virgifera, a major pest of maize. D. virgifera strongly avoided leaf-infested plants by recognizing systemic changes in soluble root components. The avoidance response occurred within 12 h and was induced by real and mimicked herbivory, but not wounding alone. Roots of leaf-infested plants showed altered patterns in soluble free and soluble conjugated phenolic acids. Biochemical inhibition and genetic manipulation of phenolic acid biosynthesis led to a complete disappearance of the avoidance response of D. virgifera. Furthermore, bioactivity-guided fractionation revealed a direct link between the avoidance response of D. virgifera and changes in soluble conjugated phenolic acids in the roots of leaf-attacked plants. Our study provides a physiological mechanism for a behavioral pattern that explains the negative effect of leaf attack on a root-feeding insect. Furthermore, it opens up the possibility to control D. virgifera in the field by genetically mimicking leaf herbivore-induced changes in root phenylpropanoid patterns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the feasibility of evoking the nociceptive withdrawal reflex (NWR) from fore and hind limbs in conscious dogs, score stimulus-associated behavioral responses, and assess the canine NWR response to suprathreshold stimulations. ANIMALS: 8 adult Beagles. PROCEDURE: Surface electromyograms evoked by transcutaneous electrical stimulation of ulnaris and digital plantar nerves were recorded from the deltoideus, cleidobrachialis, biceps femoris, and tibialis cranialis muscles. Train-of-five pulses (stimulus(train)) were used; reflex threshold (I(t train)) was determined, and recruitment curves were obtained at 1.2, 1.5, and 2 x I(t train). Additionally, a single pulse (stimulus(single)) was given at 1, 1.2, 1.5, 2, and 3 x I(t train). Latency and amplitude of NWRs were analyzed. Severity of behavioral reactions was subjectively scored. RESULTS: Fore- and hind limb I(t train) values (median; 25% to 75% interquartile range) were 2.5 mA (2.0 to 3.6 mA) and 2.1 mA (1.7 to 2.9 mA), respectively. At I(t train), NWR latencies in the deltoideus, cleidobrachialis, biceps femoris, and cranial tibialis muscles were not significantly different (19.6 milliseconds [17.1 to 20.5 milliseconds], 19.5 milliseconds [18.1 to 20.7 milliseconds], 20.5 milliseconds [14.7 to 26.4 milliseconds], and 24.4 milliseconds [17.1 to 40.5 milliseconds], respectively). Latencies obtained with stimulus(train) and stimulus(single) were similar. With increasing stimulation intensities, NWR amplitude increased and correlated positively with behavioral scores. CONCLUSIONS AND CLINICAL RELEVANCE: In dogs, the NWR can be evoked from limbs and correlates with behavioral reactions. Results suggest that NWR evaluation may enable quantification of nociceptive system excitability and efficacy of analgesics in individual dogs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human subjects overestimate the change of rising intensity sounds compared with falling intensity sounds. Rising sound intensity has therefore been proposed to be an intrinsic warning cue. In order to test this hypothesis, we presented rising, falling, and constant intensity sounds to healthy humans and gathered psychophysiological and behavioral responses. Brain activity was measured using event-related functional magnetic resonance imaging. We found that rising compared with falling sound intensity facilitates autonomic orienting reflex and phasic alertness to auditory targets. Rising intensity sounds produced neural activity in the amygdala, which was accompanied by activity in intraparietal sulcus, superior temporal sulcus, and temporal plane. Our results indicate that rising sound intensity is an elementary warning cue eliciting adaptive responses by recruiting attentional and physiological resources. Regions involved in cross-modal integration were activated by rising sound intensity, while the right-hemisphere phasic alertness network could not be supported by this study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The amygdala has been studied extensively for its critical role in associative fear conditioning in animals and humans. Noxious stimuli, such as those used for fear conditioning, are most effective in eliciting behavioral responses and amygdala activation when experienced in an unpredictable manner. Here, we show, using a translational approach in mice and humans, that unpredictability per se without interaction with motivational information is sufficient to induce sustained neural activity in the amygdala and to elicit anxiety-like behavior. Exposing mice to mere temporal unpredictability within a time series of neutral sound pulses in an otherwise neutral sensory environment increased expression of the immediate-early gene c-fos and prevented rapid habituation of single neuron activity in the basolateral amygdala. At the behavioral level, unpredictable, but not predictable, auditory stimulation induced avoidance and anxiety-like behavior. In humans, functional magnetic resonance imaging revealed that temporal unpredictably causes sustained neural activity in amygdala and anxiety-like behavior as quantified by enhanced attention toward emotional faces. Our findings show that unpredictability per se is an important feature of the sensory environment influencing habituation of neuronal activity in amygdala and emotional behavior and indicate that regulation of amygdala habituation represents an evolutionary-conserved mechanism for adapting behavior in anticipation of temporally unpredictable events.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied the effect of male coloration on interspeciÆc female mate choice in two closely related species of haplochromine cichlids from Lake Victoria. The species differ primarily in male coloration. Males of one species are red, those of the other are blue. We re- corded the behavioral responses of females to males of both species in paired male trials under white light and under monochromatic light, under which the interspecific differences in coloration were masked. Females of both species exhibited species-assortative mate choice when colour differences were visible, but chose non-assortatively when colour differences were masked by light conditions. Neither male behaviour nor overall female response frequencies differed between light treatments. That female preferences could be altered by manipulating the perceived colour pattern implies that the colour itself is used in interspecific mate choice, rather than other characters. Hence, male coloration in haplochromine cichlids does underlie sexual selection by direct mate choice, involving the capacity for individual assessment of potential mates by the female. Females of both species responded more frequently to blue males under monochromatic light. Blue males were larger and displayed more than red males. This implies a hierarchy of choice criteria. Females may use male display rates, size, or both when colour is unavailable. Where available, colour has gained dominance over other criteria. This may explain rapid speciation by sexual selection on male coloration, as proposed in a recent mathematical model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Repetitive transcranial magnetic stimulation (rTMS) applied over the right posterior parietal cortex (PPC) in healthy participants has been shown to trigger a significant rightward shift in the spatial allocation of visual attention, temporarily mimicking spatial deficits observed in neglect. In contrast, rTMS applied over the left PPC triggers a weaker or null attentional shift. However, large interindividual differences in responses to rTMS have been reported. Studies measuring changes in brain activation suggest that the effects of rTMS may depend on both interhemispheric and intrahemispheric interactions between cortical loci controlling visual attention. Here, we investigated whether variability in the structural organization of human white matter pathways subserving visual attention, as assessed by diffusion magnetic resonance imaging and tractography, could explain interindividual differences in the effects of rTMS. Most participants showed a rightward shift in the allocation of spatial attention after rTMS over the right intraparietal sulcus (IPS), but the size of this effect varied largely across participants. Conversely, rTMS over the left IPS resulted in strikingly opposed individual responses, with some participants responding with rightward and some with leftward attentional shifts. We demonstrate that microstructural and macrostructural variability within the corpus callosum, consistent with differential effects on cross-hemispheric interactions, predicts both the extent and the direction of the response to rTMS. Together, our findings suggest that the corpus callosum may have a dual inhibitory and excitatory function in maintaining the interhemispheric dynamics that underlie the allocation of spatial attention. SIGNIFICANCE STATEMENT: The posterior parietal cortex (PPC) controls allocation of attention across left versus right visual fields. Damage to this area results in neglect, characterized by a lack of spatial awareness of the side of space contralateral to the brain injury. Transcranial magnetic stimulation over the PPC is used to study cognitive mechanisms of spatial attention and to examine the potential of this technique to treat neglect. However, large individual differences in behavioral responses to stimulation have been reported. We demonstrate that the variability in the structural organization of the corpus callosum accounts for these differences. Our findings suggest novel dual mechanism of the corpus callosum function in spatial attention and have broader implications for the use of stimulation in neglect rehabilitation.