11 resultados para Axonal Transport

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stem cell transplantation promises new hope for the treatment of stroke although significant questions remain about how the grafted cells elicit their effects. One hypothesis is that transplanted stem cells enhance endogenous repair mechanisms activated after cerebral ischaemia. Recognizing that bilateral reorganization of surviving circuits is associated with recovery after stroke, we investigated the ability of transplanted human neural progenitor cells to enhance this structural plasticity. Our results show the first evidence that human neural progenitor cell treatment can significantly increase dendritic plasticity in both the ipsi- and contralesional cortex and this coincides with stem cell-induced functional recovery. Moreover, stem cell-grafted rats demonstrated increased corticocortical, corticostriatal, corticothalamic and corticospinal axonal rewiring from the contralesional side; with the transcallosal and corticospinal axonal sprouting correlating with functional recovery. Furthermore, we demonstrate that axonal transport, which is critical for both proper axonal function and axonal sprouting, is inhibited by stroke and that this is rescued by the stem cell treatment, thus identifying another novel potential mechanism of action of transplanted cells. Finally, we established in vitro co-culture assays in which these stem cells mimicked the effects observed in vivo. Through immunodepletion studies, we identified vascular endothelial growth factor, thrombospondins 1 and 2, and slit as mediators partially responsible for stem cell-induced effects on dendritic sprouting, axonal plasticity and axonal transport in vitro. Thus, we postulate that human neural progenitor cells aid recovery after stroke through secretion of factors that enhance brain repair and plasticity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is increasingly recognised that chronically activated glia contribute to the pathology of various neurodegenerative diseases, including glaucoma. One means by which this can occur is through the release of neurotoxic, proinflammatory factors. In the current study, we therefore investigated the spatio-temporal patterns of expression of three such cytokines, IL-1β, TNFα and IL-6, in a validated rat model of experimental glaucoma. First, only weak evidence was found for increased expression of IL-1β and TNFα following induction of ocular hypertension. Second, and much more striking, was that robust evidence was uncovered showing IL-6 to be synthesised by injured retinal ganglion cells following elevation of intraocular pressure and transported in an orthograde fashion along the nerve, accumulating at sites of axonal disruption in the optic nerve head. Verification that IL-6 represents a novel marker of disrupted axonal transport in this model was obtained by performing double labelling immunofluorescence with recognised markers of fast axonal transport. The stimulus for IL-6 synthesis and axonal transport during experimental glaucoma arose from axonal injury rather than ocular hypertension, as the response was identical after optic nerve crush and bilateral occlusion of the carotid arteries, each of which is independent of elevated intraocular pressure. Moreover, the response of IL-6 was not a generalised feature of the gp130 family of cytokines, as it was not mimicked by another family member, ciliary neurotrophic factor. Finally, further study suggested that IL-6 may be an early part of the endogenous regenerative response as the cytokine colocalised with growth-associated membrane phosphoprotein-43 in some putative regenerating axons, and potently stimulated neuritogenesis in retinal ganglion cells in culture, an effect that was additive to that of ciliary neurotrophic factor. These data comprise clear evidence that IL-6 is actively involved in the attempt of injured retinal ganglion cells to regenerate their axons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The DNAL4 (dynein, axonemal, light polypeptide 4) gene encodes a light chain of dynein. Dyneins are motor proteins that contribute to axonal transport. Cloning and characterization of the porcine DNAL4 revealed a conserved organization with respect to the human ortholog. The porcine DNAL4 gene consists of 4 exons and codes for a peptide of 105 amino acids. The porcine DNAL4 gene is located on SSC5p15. Analysis of the naturally occurring variation of the DNAL4 gene in pigs from the Piétrain und Duroc breeds revealed five SNPs in non-coding regions of the gene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The endocannabinoid system (ECS) comprises the cannabinoid receptors CB1 and CB2 and their endogenous arachidonic acid-derived agonists 2-arachidonoyl glycerol and anandamide, which play important neuromodulatory roles. Recently, a novel class of negative allosteric CB1 receptor peptide ligands, hemopressin-like peptides derived from alpha hemoglobin, has been described, with yet unknown origin and function in the CNS. Using monoclonal antibodies we now identified the localization of RVD-hemopressin (pepcan-12) and N-terminally extended peptide endocannabinoids (pepcans) in the CNS and determined their neuronal origin. Immunohistochemical analyses in rodents revealed distinctive and specific staining in major groups of noradrenergic neurons, including the locus coeruleus (LC), A1, A5 and A7 neurons, which appear to be major sites of production/release in the CNS. No staining was detected in dopaminergic neurons. Peptidergic axons were seen throughout the brain (notably hippocampus and cerebral cortex) and spinal cord, indicative of anterograde axonal transport of pepcans. Intriguingly, the chromaffin cells in the adrenal medulla were also strongly stained for pepcans. We found specific co-expression of pepcans with galanin, both in the LC and adrenal gland. Using LC-MS/MS, pepcan-12 was only detected in non-perfused brain (∼40 pmol/g), suggesting that in the CNS it is secreted and present in extracellular compartments. In adrenal glands, significantly more pepcan-12 (400-700 pmol/g) was measured in both non-perfused and perfused tissue. Thus, chromaffin cells may be a major production site of pepcan-12 found in blood. These data uncover important areas of peptide endocannabinoid occurrence with exclusive noradrenergic immunohistochemical staining, opening new doors to investigate their potential physiological function in the ECS. This article is part of a Special Issue entitled 'Fluorescent Neuro-Ligands'.